33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metrics of sleep apnea severity: beyond the apnea-hypopnea index

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obstructive sleep apnea (OSA) is thought to affect almost 1 billion people worldwide. OSA has well established cardiovascular and neurocognitive sequelae, although the optimal metric to assess its severity and/or potential response to therapy remains unclear. The apnea-hypopnea index (AHI) is well established; thus, we review its history and predictive value in various different clinical contexts. Although the AHI is often criticized for its limitations, it remains the best studied metric of OSA severity, albeit imperfect. We further review the potential value of alternative metrics including hypoxic burden, arousal intensity, odds ratio product, and cardiopulmonary coupling. We conclude with possible future directions to capture clinically meaningful OSA endophenotypes including the use of genetics, blood biomarkers, machine/deep learning and wearable technologies. Further research in OSA should be directed towards providing diagnostic and prognostic information to make the OSA diagnosis more accessible and to improving prognostic information regarding OSA consequences, in order to guide patient care and to help in the design of future clinical trials.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis

          There is a scarcity of published data on the global prevalence of obstructive sleep apnoea, a disorder associated with major neurocognitive and cardiovascular sequelae. We used publicly available data and contacted key opinion leaders to estimate the global prevalence of obstructive sleep apnoea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.

            The American Academy of Sleep Medicine (AASM) Sleep Apnea Definitions Task Force reviewed the current rules for scoring respiratory events in the 2007 AASM Manual for the Scoring and Sleep and Associated Events to determine if revision was indicated. The goals of the task force were (1) to clarify and simplify the current scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. The task force reviewed the evidence cited by the AASM systematic review of the reliability and validity of scoring respiratory events published in 2007 and relevant studies that have appeared in the literature since that publication. Given the limitations of the published evidence, a consensus process was used to formulate the majority of the task force recommendations concerning revisions.The task force made recommendations concerning recommended and alternative sensors for the detection of apnea and hypopnea to be used during diagnostic and positive airway pressure (PAP) titration polysomnography. An alternative sensor is used if the recommended sensor fails or the signal is inaccurate. The PAP device flow signal is the recommended sensor for the detection of apnea, hypopnea, and respiratory effort related arousals (RERAs) during PAP titration studies. Appropriate filter settings for recording (display) of the nasal pressure signal to facilitate visualization of inspiratory flattening are also specified. The respiratory inductance plethysmography (RIP) signals to be used as alternative sensors for apnea and hypopnea detection are specified. The task force reached consensus on use of the same sensors for adult and pediatric patients except for the following: (1) the end-tidal PCO(2) signal can be used as an alternative sensor for apnea detection in children only, and (2) polyvinylidene fluoride (PVDF) belts can be used to monitor respiratory effort (thoracoabdominal belts) and as an alternative sensor for detection of apnea and hypopnea (PVDFsum) only in adults.The task force recommends the following changes to the 2007 respiratory scoring rules. Apnea in adults is scored when there is a drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either ≥ 3% arterial oxygen desaturation or an arousal. Scoring a hypopnea as either obstructive or central is now listed as optional, and the recommended scoring rules are presented. In children an apnea is scored when peak signal excursions drop by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative sensor; and the event meets duration and respiratory effort criteria for an obstructive, mixed, or central apnea. A central apnea is scored in children when the event meets criteria for an apnea, there is an absence of inspiratory effort throughout the event, and at least one of the following is met: (1) the event is ≥ 20 seconds in duration, (2) the event is associated with an arousal or ≥ 3% oxygen desaturation, (3) (infants under 1 year of age only) the event is associated with a decrease in heart rate to less than 50 beats per minute for at least 5 seconds or less than 60 beats per minute for 15 seconds. A hypopnea is scored in children when the peak signal excursions drop is ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ the duration of 2 breaths in association with either ≥ 3% oxygen desaturation or an arousal. In children and adults, surrogates of the arterial PCO(2) are the end-tidal PCO(2) or transcutaneous PCO(2) (diagnostic study) or transcutaneous PCO(2) (titration study). For adults, sleep hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 55 mm Hg for ≥ 10 minutes or there is an increase in the arterial PCO(2) (or surrogate) ≥ 10 mm Hg (in comparison to an awake supine value) to a value exceeding 50 mm Hg for ≥ 10 minutes. For pediatric patients hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 50 mm Hg for > 25% of total sleep time. In adults Cheyne-Stokes breathing is scored when both of the following are met: (1) there are episodes of ≥ 3 consecutive central apneas and/or central hypopneas separated by a crescendo and decrescendo change in breathing amplitude with a cycle length of at least 40 seconds (typically 45 to 90 seconds), and (2) there are five or more central apneas and/or central hypopneas per hour associated with the crescendo/decrescendo breathing pattern recorded over a minimum of 2 hours of monitoring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective study of the association between sleep-disordered breathing and hypertension.

              Sleep-disordered breathing is prevalent in the general population and has been linked to chronically elevated blood pressure in cross-sectional epidemiologic studies. We performed a prospective, population-based study of the association between objectively measured sleep-disordered breathing and hypertension (defined as a laboratory-measured blood pressure of at least 140/90 mm Hg or the use of antihypertensive medications). We analyzed data on sleep-disordered breathing, blood pressure, habitus, and health history at base line and after four years of follow-up in 709 participants of the Wisconsin Sleep Cohort Study (and after eight years of follow-up in the case of 184 of these participants). Participants were assessed overnight by 18-channel polysomnography for sleep-disordered breathing, as defined by the apnea-hypopnea index (the number of episodes of apnea and hypopnea per hour of sleep). The odds ratios for the presence of hypertension at the four-year follow-up study according to the apnea-hypopnea index at base line were estimated after adjustment for base-line hypertension status, body-mass index, neck and waist circumference, age, sex, and weekly use of alcohol and cigarettes. Relative to the reference category of an apnea-hypopnea index of 0 events per hour at base line, the odds ratios for the presence of hypertension at follow-up were 1.42 (95 percent confidence interval, 1.13 to 1.78) with an apnea-hypopnea index of 0.1 to 4.9 events per hour at base line as compared with none, 2.03 (95 percent confidence interval, 1.29 to 3.17) with an apnea-hypopnea index of 5.0 to 14.9 events per hour, and 2.89 (95 percent confidence interval, 1.46 to 5.64) with an apnea-hypopnea index of 15.0 or more events per hour. We found a dose-response association between sleep-disordered breathing at base line and the presence of hypertension four years later that was independent of known confounding factors. The findings suggest that sleep-disordered breathing is likely to be a risk factor for hypertension and consequent cardiovascular morbidity in the general population.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Sleep
                Oxford University Press (OUP)
                0161-8105
                1550-9109
                July 01 2021
                July 09 2021
                March 09 2021
                July 01 2021
                July 09 2021
                March 09 2021
                : 44
                : 7
                Affiliations
                [1 ]Department of Medicine, University of California San Diego, La Jolla, CA
                [2 ]Department of Medicine, Mt. Sinai, New York, NY
                [3 ]Department of Medicine, University of British Columbia, Vancouver, BC, Canada
                [4 ]Department of Medicine, Emory University, Atlanta, GA
                [5 ]Department of Medicine, Atrium Health Sleep Medicine, Atrium Health, Charlotte, NC
                [6 ]Department of Medicine, The University of Western Australia, Perth, Australia
                [7 ]Department of Medicine, Cleveland Clinic, Cleveland, OH
                [8 ]Department of Medicine, University of Pennsylvania, Philadelphia, PA
                [9 ]Department of Medicine, University of Miami, Miami, FL
                [10 ]Alairion Pharmaceuticals Cambridge, MA
                [11 ]Medical service, VA Boston Healthcare System, Boston, MA
                Article
                10.1093/sleep/zsab030
                33693939
                7eda3ae5-e5b7-420d-a95f-ed02ac6c0286
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article