0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Self-powered CH 3NH 3PbI 3 perovskite photodiode with a noise-suppressible passivation layer of poly(methyl methacrylate)

      , , , , ,
      Optics Express
      Optica Publishing Group

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organohalide perovskite materials and related optoelectronic applications have drawn significant attention due to their promising high-performance photon-to-electricity conversion efficiencies. Herein, we demonstrate a highly sensitive self-powered perovskite-based photodetector created with a noise-current-suppressible passivation layer of poly(methyl methacrylate) (PMMA) at the interface between a CH 3NH 3PbI 3 light-absorbing layer and a NiO x hole-transporting layer. Along with the defect passivation effect, the PMMA layer effectively diminishes unwanted carrier recombination losses at the interface, resulting in a significant reduction of the leakage/noise current. Consequently, without external bias, a remarkably high level of specific detectivity (∼4.5 × 10 13 Jones from the dark current and ∼0.81 × 10 12 Jones from the noise current) can be achieved due to the use of the PMMA passivation layer, greatly exceeding those of conventional unpassivated perovskite devices. Moreover, we observed a very wide linear dynamic response range of ∼129 dB together with rapid rise and decay response times of ∼52 and ∼18 µs, respectively. Overall, these results provide a solid foundation for advanced interface-engineering to realize high-performance self-powered perovskite photodetectors for various optoelectronic applications.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.

            The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file.

              Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. Adding cesium improves the compositions greatly.
                Bookmark

                Author and article information

                Journal
                OPEXFF
                Optics Express
                Opt. Express
                Optica Publishing Group
                1094-4087
                2023
                2023
                January 03 2023
                January 16 2023
                : 31
                : 2
                : 1202
                Article
                10.1364/OE.479285
                7ea2744d-31d1-4df5-b248-1c7a1a98d9c0
                © 2023

                https://doi.org/10.1364/OA_License_v2#VOR-OA

                History

                Comments

                Comment on this article