42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Genetic Basis of Variation in Clean Lineages of Saccharomyces cerevisiae in Response to Stresses Encountered during Bioethanol Fermentations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations. Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation. Linkage analysis resulted in the identification of QTL's for tolerance to weak acid and osmotic stress. We tested candidate genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed phenotypic variation; this approach validated a gene ( COX20) for weak acid stress and a gene ( RCK2) for osmotic stress. Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between parental strains and the importance of these changes is currently being ascertained.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The response to heat shock and oxidative stress in Saccharomyces cerevisiae.

          A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ethanol fermentation from biomass resources: current state and prospects.

            In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissecting the architecture of a quantitative trait locus in yeast.

              Most phenotypic diversity in natural populations is characterized by differences in degree rather than in kind. Identification of the actual genes underlying these quantitative traits has proved difficult. As a result, little is known about their genetic architecture. The failures are thought to be due to the different contributions of many underlying genes to the phenotype and the ability of different combinations of genes and environmental factors to produce similar phenotypes. This study combined genome-wide mapping and a new genetic technique named reciprocal-hemizygosity analysis to achieve the complete dissection of a quantitative trait locus (QTL) in Saccharomyces cerevisiae. A QTL architecture was uncovered that was more complex than expected. Functional linkages both in cis and in trans were found between three tightly linked quantitative trait genes that are neither necessary nor sufficient in isolation. This arrangement of alleles explains heterosis (hybrid vigour), the increased fitness of the heterozygote compared with homozygotes. It also demonstrates a deficiency in current approaches to QTL dissection with implications extending to traits in other organisms, including human genetic diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                12 August 2014
                : 9
                : 8
                : e103233
                Affiliations
                [1 ]School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, United Kingdom
                [2 ]Centre for Genetic Architecture of Complex Traits, Department of Genetics, University of Leicester, Adrian Building, Leicester, Leicestershire, United Kingdom
                University of Nottingham, United Kingdom
                Author notes

                Competing Interests: Edward Louis is a PLOS ONE editorial board member. This does not alter the authors' adherence to PLOS ONE Editorial policies and criteria.

                Conceived and designed the experiments: DG TTW EJL KAS. Performed the experiments: DG TTW KL YC MM AJH. Analyzed the data: DG TTW MM KL. Contributed reagents/materials/analysis tools: EJL KAS. Contributed to the writing of the manuscript: DG TTW MM EJL TGP GAT KAS.

                [¤a]

                Current address: Pepsico Int, Leicester, Leicestershire, United Kingdom

                [¤b]

                Current address: SABMiller plc, SABMiller House, Woking, Surrey, United Kingdom

                Article
                PONE-D-14-13970
                10.1371/journal.pone.0103233
                4130530
                7ea07131-09af-42aa-adc7-a4937cfaad52
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 March 2014
                : 30 June 2014
                Page count
                Pages: 14
                Funding
                The research reported here was supported (in full or in part) by the Biotechnology and Biological Sciences Research Council (BBSRC) Sustainable Bioenergy Centre (BSBEC), under the programme for ‘Lignocellulosic Conversion to Ethanol’ (LACE) [Grant Ref: BB/G01616X/1]. This is a large interdisciplinary programme and the views expressed in this paper are those of the authors alone, and do not necessarily reflect the views of the collaborators or the policies of the funding bodies. This project is part financed by the European Regional Development Fund project EMX05568. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biotechnology
                Applied Microbiology
                Cell Biology
                Molecular Cell Biology
                Osmotic Shock
                Genetics
                Molecular Genetics
                Molecular Biology
                Molecular Biology Techniques
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article