Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the industrial use of Mentha piperita L. (peppermint), it is important to develop an optimal method to obtain standardized plant material with specific quality parameters. In vitro cultures may allow the production of desirable odor-active compounds (OACs) and improve their share in the plant aroma profile. There are two types of explants that are commonly used, apical meristems and nodal segments. In this study, the best overall effects were shown to be produced by the combination of MS medium with the addition of 0.5 mg·dm −3 indolyl-3-butyric acid. In this case, a very high degree of rooting was found (97% for apical meristems, 100% for nodal meristems), lateral shoots were induced in 83% of both types of explant, and the content of OACs in the plant aroma profile increased significantly, especially menthofurolactone and cis-carvone oxide, responsible in this case for a characteristic mint-like aroma. The comparison of the volatile organic compounds (VOCs) obtained from plants of different origin by GC-MS showed no significant differences in their qualitative composition. Moreover, in-vitro-cultivated peppermint on a medium containing 0.5 mg·dm −3 2-isopentinloadenine and 0.1 mg·dm −3 indolyl-3-acetic acid showed significant amounts of menthofurolactone in its VOC composition.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.).

          Peppermint (Mentha piperita L.) is one of the most widely consumed single ingredient herbal teas, or tisanes. Peppermint tea, brewed from the plant leaves, and the essential oil of peppermint are used in traditional medicines. Evidence-based research regarding the bioactivity of this herb is reviewed. The phenolic constituents of the leaves include rosmarinic acid and several flavonoids, primarily eriocitrin, luteolin and hesperidin. The main volatile components of the essential oil are menthol and menthone. In vitro, peppermint has significant antimicrobial and antiviral activities, strong antioxidant and antitumor actions, and some antiallergenic potential. Animal model studies demonstrate a relaxation effect on gastrointestinal (GI) tissue, analgesic and anesthetic effects in the central and peripheral nervous system, immunomodulating actions and chemopreventive potential. Human studies on the GI, respiratory tract and analgesic effects of peppermint oil and its constituents have been reported. Several clinical trials examining the effects of peppermint oil on irritable bowel syndrome (IBS) symptoms have been conducted. However, human studies of peppermint leaf are limited and clinical trials of peppermint tea are absent. Adverse reactions to peppermint tea have not been reported, although caution has been urged for peppermint oil therapy in patients with GI reflux, hiatal hernia or kidney stones.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Essential Oils as Antimicrobial Agents—Myth or Real Alternative?

            Herbs and the essential oils derived from them have been used from the beginning of human history for different purposes. Their beneficial properties have been applied to mask unpleasant odors, attract the attention of other people, add flavor and aroma properties to prepared dishes, perfumes, and cosmetics, etc. Herbs and essential oils (EOs) have also been used in medicine because of their biological properties, such as larvicidal action, analgesic and anti-inflammatory properties, antioxidant, fungicide, and antitumor activities, and many more. Many EOs exhibit antimicrobial properties, which is extremely important in fields of science and industry, such as medicine, agriculture, or cosmetology. Among the 250 EOs which are commercially available, about a dozen possess high antimicrobial potential. According to available papers and patents, EOs seem to be a potential alternative to synthetic compounds, especially because of the resistance that has been increasingly developed by pathogenic microorganisms. In this review we summarize the latest research studies about the most-active EOs that are known and used because of their antimicrobial properties. Finally, it is noteworthy that the antimicrobial activities of EOs are not preeminent for all strains. Further investigations should, thus, focus on targeting EOs and microorganisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plants of Genus Mentha : From Farm to Food Factory

              Genus Mentha, a member of Lamiaceae family, encompasses a series of species used on an industrial scale and with a well-described and developed culture process. Extracts of this genus are traditionally used as foods and are highly valued due to the presence of significant amounts of antioxidant phenolic compounds. Many essential oil chemotypes show distinct aromatic flavor conferred by different terpene proportions. Mint extracts and their derived essential oils exert notable effects against a broad spectrum of bacteria, fungi or yeasts, tested both in vitro or in various food matrices. Their chemical compositions are well-known, which suggest and even prompt their safe use. In this review, genus Mentha plant cultivation, phytochemical analysis and even antimicrobial activity are carefully described. Also, in consideration of its natural origin, antioxidant and antimicrobial properties, a special emphasis was given to mint-derived products as an interesting alternative to artificial preservatives towards establishing a wide range of applications for shelf-life extension of food ingredients and even foodstuffs. Mentha cultivation techniques markedly influence its phytochemical composition. Both extracts and essential oils display a broad spectrum of activity, closely related to its phytochemical composition. Therefore, industrial implementation of genus Mentha depends on its efficacy, safety and neutral taste.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                07 June 2020
                June 2020
                : 25
                : 11
                : 2652
                Affiliations
                [1 ]Department of Chemistry, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375 Wrocław, Poland; antoni.szumny@ 123456upwr.edu.pl
                [2 ]Department of Plant Breeding and Seed Production, University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland; krystian.piotrowski1995@ 123456gmail.com (K.P.); kornelia.kolasa@ 123456gmail.com (K.K.); renata.galek@ 123456upwr.edu.pl (R.G.)
                Author notes
                [* ]Correspondence: jacek.lyczko@ 123456upwr.edu.pl ; Tel.: +48-71-320-51-47
                Author information
                https://orcid.org/0000-0002-8423-7296
                https://orcid.org/0000-0002-0102-1335
                https://orcid.org/0000-0002-0536-153X
                Article
                molecules-25-02652
                10.3390/molecules25112652
                7321412
                32517340
                7e6d7078-7bdc-44ba-8547-c7e3ea055558
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 April 2020
                : 03 June 2020
                Categories
                Article

                gc-ms,hs-spme,micropropagation,oacs,peppermint,vocs
                gc-ms, hs-spme, micropropagation, oacs, peppermint, vocs

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content239

                Cited by7

                Most referenced authors458