31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis. However, whether the roles of the different E2fs are interchangeable in controlling development and tumorigenesis in the retina or if they have selective functions remains unknown. In this study, we found that E2f family members play distinct roles in the development and tumorigenesis. In Rb; p107-deficient retinae, E2f1 and E2f3 inactivation rescued tumor formation but only E2f1 rescued the retinal development phenotype. This allowed the identification of key target genes for Rb/E2f family signaling contributing to tumorigenesis and those contributing to developmental defects. We found that Sox4 and Sox11 genes contribute to the developmental phenotype and Hells and Uhrf1 contribute to tumorigenesis. Using orthotopic human xenografts, we validated that upregulation of HELLS and UHRF1 is essential for the tumor phenotype. Also, these epigenetic regulators are important for the regulation of SYK.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Pax6 is required for the multipotent state of retinal progenitor cells.

          The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry.

            Cancer cells arise from normal cells through the acquisition of a series of mutations in oncogenes and tumour suppressor genes. Mouse models of human cancer often rely on germline alterations that activate or inactivate genes of interest. One limitation of this approach is that germline mutations might have effects other than somatic mutations, owing to developmental compensation. To model sporadic cancers associated with inactivation of the retinoblastoma (RB) tumour suppressor gene in humans, we have produced a conditional allele of the mouse Rb gene. We show here that acute loss of Rb in primary quiescent cells is sufficient for cell cycle entry and has phenotypic consequences different from germline loss of Rb function. This difference is explained in part by functional compensation by the Rb-related gene p107. We also show that acute loss of Rb in senescent cells leads to reversal of the cellular senescence programme. Thus, the use of conditional knockout strategies might refine our understanding of gene function and help to model human cancer more accurately.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis.

              Since the discovery almost fifteen years ago that E2F transcription factors are key targets of the retinoblastoma protein (RB), studies of the E2F family have uncovered critical roles in the control of transcription, cell cycle and apoptosis. E2F proteins are encoded by at least eight genes, E2F1 through E2F8. While specific roles for individual E2Fs in mediating the effects of RB loss are emerging, it is also becoming clear that there are no simple divisions of labor among the E2F family. Instead, an individual E2F can function to activate or repress transcription, promote or impede cell cycle progression and enhance or inhibit cell death, dependent on the cellular context. While functional redundancy among E2Fs and the striking influences of cellular context on the effects of E2F loss or gain of function have prevented a simple delineation of unique functions within the E2F family, these complexities undoubtedly reflect the extensive regulation and importance of this transcription factor family.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                October 2014
                13 October 2014
                : 5
                : 20
                : 9594-9608
                Affiliations
                1 Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
                2 Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
                3 Department of Ophtalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
                4 Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
                5 Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, Leuven, Belgium
                6 Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
                7 Howard Hughes Medical Institute, Chevy Chase, MD, USA
                Author notes
                Correspondence to: Michael A. Dyer, michael.dyer@ 123456stjude.org
                Article
                10.18632/oncotarget.2468
                4259422
                25338120
                7e539f51-a2ea-4bd8-b4f5-60b78ed89cb0
                Copyright: © 2014 Benavente et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 4 August 2014
                : 6 September 2014
                Categories
                Priority Research Paper

                Oncology & Radiotherapy
                rb,e2f,hells,uhrf1,retinoblastoma,cancer
                Oncology & Radiotherapy
                rb, e2f, hells, uhrf1, retinoblastoma, cancer

                Comments

                Comment on this article