7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DNA End Resection: Mechanism and Control

      1 , 2 , 3 , 4
      Annual Review of Genetics
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5′→3′ nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Human CtIP promotes DNA end resection.

          In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

            Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.

              DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'-3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11-Rad50-Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.
                Bookmark

                Author and article information

                Journal
                Annual Review of Genetics
                Annu. Rev. Genet.
                Annual Reviews
                0066-4197
                1545-2948
                November 23 2021
                November 23 2021
                : 55
                : 1
                : 285-307
                Affiliations
                [1 ]Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland;
                [2 ]Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
                [3 ]Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA;
                [4 ]Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
                Article
                10.1146/annurev-genet-071719-020312
                34813349
                7e3b5853-a8b5-4d67-b5db-6be4f4e78fa5
                © 2021
                History

                Comments

                Comment on this article