15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A systematic characterization of the low-energy photon response of plastic scintillation detectors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology.

          The American Association of Physicists in Medicine (AAPM) presents a new protocol, developed by the Radiation Therapy Committee Task Group 61, for reference dosimetry of low- and medium-energy x rays for radiotherapy and radiobiology (40 kV or = 100 kV (the "in-phantom" method). The in-phantom method is not recommended for tube potentials < 100 kV. Guidelines are provided to determine the dose at other points in water and the dose at the surface of other biological materials of interest. The protocol is based on an up-to-date data set of basic dosimetry parameters, which produce consistent dose values for the two methods recommended. Estimates of uncertainties on the final dose values are also presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Analysis of response data for several organic scintillators

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Miniature scintillating detector for small field radiation therapy.

              In planning stereotactic radiosurgery treatments, depth dose curves, profiles, and dose rate of treatment beams are difficult to obtain with conventional detectors because of loss of lateral electronic equilibrium and volume averaging. A scintillating detector with high spatial resolution and good reliability has been developed to overcome this problem. The miniature dosimeter consists of two identical radiation-resistant 10 m long silica optical fibers, each connected to an independent silicon photodiode. A small cylindrical polystyrene scintillator (3.9 mm3) is optically glued to the detection fiber. The light seen by the photodiode connected to this fiber arises from fluorescence of the scintillator and from the Cerenkov effect produced in silica. The reference signal produced by the fiber without scintillator is used to subtract the Cerenkov light contribution from the raw detector response. The sensitive volume of the scintillating detector is nearly water-equivalent and thus minimizes dose distribution perturbation in water. The miniature dosimeter has a spatial resolution comparable to the film-densitometer system. Profiles of 1 cm diam, 6 MV photon beam measured with both systems show very similar shapes. Furthermore, the use of photodiodes instead of photomultiplier tubes gives a better stability response and offers the possibility to perform absolute dosimetry.
                Bookmark

                Author and article information

                Journal
                Physics in Medicine and Biology
                Phys. Med. Biol.
                IOP Publishing
                0031-9155
                1361-6560
                August 07 2016
                August 07 2016
                July 06 2016
                : 61
                : 15
                : 5569-5586
                Article
                10.1088/0031-9155/61/15/5569
                7e12c20d-eda7-4050-b21a-5f1ce41bbe20
                © 2016

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article