35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decision Points: The Factors Influencing the Decision to Feed in the Medicinal Leech

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The decision to feed is a complex task that requires making several small independent choices. Am I hungry? Where do I look for food? Is there something better I’d rather be doing? When should I stop? With all of these questions, it is no wonder that decisions about feeding depend on several sensory modalities and that the influences of these sensory systems would be evident throughout the nervous system. The leech is uniquely well suited for studying these complicated questions due to its relatively simple nervous system, its exceptionally well-characterized behaviors and neural circuits, and the ease with which one can employ semi-intact preparations to study the link between physiology and decision-making. We will begin this review by discussing the cellular substrates that govern the decision to initiate and to terminate a bout of feeding. We will then discuss how feeding temporarily blocks competing behaviors from being expressed while the animal continues to feed. Then we will review what is currently known about how feeding affects long-term behavioral choices of the leech. Finally, we conclude with a short discussion of the advantages of the leech’s decision-making circuit’s design and how this design might be applicable to all decision circuits.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          State-dependent opioid control of pain.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two chemosensory receptors together mediate carbon dioxide detection in Drosophila.

            Blood-feeding insects, including the malaria mosquito Anopheles gambiae, use highly specialized and sensitive olfactory systems to locate their hosts. This is accomplished by detecting and following plumes of volatile host emissions, which include carbon dioxide (CO2). CO2 is sensed by a population of olfactory sensory neurons in the maxillary palps of mosquitoes and in the antennae of the more genetically tractable fruitfly, Drosophila melanogaster. The molecular identity of the chemosensory CO2 receptor, however, remains unknown. Here we report that CO2-responsive neurons in Drosophila co-express a pair of chemosensory receptors, Gr21a and Gr63a, at both larval and adult life stages. We identify mosquito homologues of Gr21a and Gr63a, GPRGR22 and GPRGR24, and show that these are co-expressed in A. gambiae maxillary palps. We show that Gr21a and Gr63a together are sufficient for olfactory CO2-chemosensation in Drosophila. Ectopic expression of Gr21a and Gr63a together confers CO2 sensitivity on CO2-insensitive olfactory neurons, but neither gustatory receptor alone has this function. Mutant flies lacking Gr63a lose both electrophysiological and behavioural responses to CO2. Knowledge of the molecular identity of the insect olfactory CO2 receptors may spur the development of novel mosquito control strategies designed to take advantage of this unique and critical olfactory pathway. This in turn could bolster the worldwide fight against malaria and other insect-borne diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural mechanisms of visual working memory in prefrontal cortex of the macaque.

              Prefrontal (PF) cells were studied in monkeys performing a delayed matching to sample task, which requires working memory. The stimuli were complex visual patterns and to solve the task, the monkeys had to discriminate among the stimuli, maintain a memory of the sample stimulus during the delay periods, and evaluate whether a test stimulus matched the sample presented earlier in the trial. PF cells have properties consistent with a role in all three of these operations. Approximately 25% of the cells responded selectively to different visual stimuli. Half of the cells showed heightened activity during the delay after the sample and, for many of these cells, the magnitude of delay activity was selective for different samples. Finally, more than half of the cells responded differently to the test stimuli depending on whether they matched the sample. Because inferior temporal (IT) cortex also is important for working memory, we compared PF cells with IT cells studied in the same task. Compared with IT cortex, PF responses were less often stimulus-selective but conveyed more information about whether a given test stimulus was a match to the sample. Furthermore, sample-selective delay activity in PF cortex was maintained throughout the trial even when other test stimuli intervened during the delay, whereas delay activity in IT cortex was disrupted by intervening stimuli. The results suggest that PF cortex plays a primary role in working memory tasks and may be a source of feedback inputs to IT cortex, biasing activity in favor of behaviorally relevant stimuli.
                Bookmark

                Author and article information

                Journal
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Research Foundation
                1662-4548
                1662-453X
                05 April 2012
                06 July 2012
                2012
                : 6
                : 101
                Affiliations
                [1] 1simpleDepartment of Neurobiology, Harvard Medical School Boston, MA, USA
                [2] 2simpleNeurobiology Section, Division of Biological Sciences, University of California San Diego La Jolla, CA, USA
                Author notes

                Edited by: Björn Brembs, Freie Universität Berlin, Germany

                Reviewed by: Pavel M. Itskov, Champalimaud Foundation, Portugal; Romuald Nargeot, Universités Bordeaux, France

                *Correspondence: William B. Kristan Jr., Neurobiology Section 0357, Division of Biological Sciences, University of California San Diego, 3119 Pacific Hall, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA. e-mail: wkristan@ 123456ucsd.edu

                This article was submitted to Frontiers in Decision Neuroscience, a specialty of Frontiers in Neuroscience.

                Article
                10.3389/fnins.2012.00101
                3390556
                22783162
                7deaaa9d-791b-4d8d-aa00-9cb3b0065be0
                Copyright © 2012 Gaudry and Kristan Jr..

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 01 February 2012
                : 18 June 2012
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 71, Pages: 10, Words: 8460
                Categories
                Neuroscience
                Review Article

                Neurosciences
                leech,distributed,sensory gating,serotonin,behavioral choice,feeding,decision-making,modular
                Neurosciences
                leech, distributed, sensory gating, serotonin, behavioral choice, feeding, decision-making, modular

                Comments

                Comment on this article