21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double Δ treYZΔ treS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double Δ treYZΔ treS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the Δ treYZΔ treS in trans. Surprisingly, the growth defect of the double Δ treYZΔ treS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved “house-keeping” anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf.

          Author Summary

          Pseudomonas aeruginosa is an opportunistic human bacterial pathogen that infects a wide range of plants and animals, including the model laboratory plant Arabidopsis thaliana. P. aeruginosa utilizes many of the same virulence-related factors to infect both plants and animals. However, because plants have fundamentally different cellular architecture than animals, we hypothesized that P. aeruginosa synthesizes specific factors required for infecting plants but not animals. We found that synthesis of the sugar molecule trehalose, an unusual dimer of glucose, is required for plant but not animal pathogenesis. Although P. aeruginosa mutants defective in trehalose synthesis are non-pathogenic in Arabidopsis, Arabidopsis mutants that lack the polysaccharide xyloglucan in their cell walls can be infected by P. aeruginosa trehalose mutants. Moreover, application of ammonium nitrate overcomes the requirement for trehalose for infecting an Arabidopsis leaf. Our data suggest that trehalose promotes the acquisition of nitrogen-containing nutrients, thereby allowing P. aeruginosa to replicate in the nutrient-poor intercellular spaces in a leaf. This work shows how an opportunistic pathogen has repurposed a highly conserved “house-keeping” function (trehalose biosynthesis) as a potent virulence factor.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Sugar transporters for intercellular exchange and nutrition of pathogens.

          Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial disease resistance in Arabidopsis through flagellin perception.

            Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

              Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2013
                March 2013
                7 March 2013
                : 9
                : 3
                : e1003217
                Affiliations
                [1 ]Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [2 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                [3 ]Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
                [4 ]Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [5 ]Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SD JMU ED RF CK MAF GPP FMA. Performed the experiments: SD JMU ED JB RF JLA DT MR CK. Analyzed the data: SD JMU ED MAF GPP FMA. Wrote the paper: SD JMU ED MAF GPP FMA.

                [¤a]

                Current address: Skidmore College, Saratoga Springs, New York, United States of America

                [¤b]

                Current address: Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania, United States of America

                [¤c]

                Current address: Max Delbrück Center for Molecular Medicine, Berlin, Germany

                Article
                PPATHOGENS-D-12-03132
                10.1371/journal.ppat.1003217
                3591346
                23505373
                7de4e80c-be15-4656-a930-f58af01b709f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 December 2012
                : 13 January 2013
                Page count
                Pages: 15
                Funding
                This work was funded by an MBRC Tosteson Fellowship awarded to SD, an Opportunity Award from the Program for Breakthrough Biomedical Research and NIH grant DP2 OD007290 awarded to MAF, NIH grant R01 HL092515 awarded to GPP, and NIH grants R37 GM48707 and R01 AI085581 and by NSF grant MCB-0519898 awarded to FMA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Genetics
                Genomics
                Microbiology
                Molecular Cell Biology
                Plant Science

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article