Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Universal nature of particle displacements close to glass and jamming transitions

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We examine the structure of the distribution of single particle displacements (van-Hove function) in a broad class of materials close to glass and jamming transitions. In a wide time window comprising structural relaxation, van-Hove functions reflect the coexistence of slow and fast particles (dynamic heterogeneity). The tails of the distributions exhibit exponential, rather than Gaussian, decay. We argue that this behavior is universal in glassy materials and should be considered the analog, in space, of the stretched exponential decay of time correlation functions. We introduce a dynamical model that describes quantitatively numerical and experimental data in supercooled liquids, colloidal hard spheres and granular materials. The tails of the distributions directly explain the decoupling between translational diffusion and structural relaxation observed in glassy materials.

          Related collections

          Author and article information

          Journal
          13 July 2007
          Article
          10.1103/PhysRevLett.99.060604
          0707.2095
          7dd47162-af35-4d6d-a011-940bf303e177
          History
          Custom metadata
          Phys. Rev. Lett. 99, 060604 (2007)
          5 pages; 4 figs
          cond-mat.stat-mech

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content51

          Cited by69