3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide identification of NHX (Na +/H + antiporter) gene family in Cucurbita L. and functional analysis of CmoNHX1 under salt stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil salinization, which is the accumulation of salt in soil, can have a negative impact on crop growth and development by creating an osmotic stress that can reduce water uptake and cause ion toxicity. The NHX gene family plays an important role in plant response to salt stress by encoding for Na +/H + antiporters that help regulate the transport of sodium ions across cellular membranes. In this study, we identified 26 NHX genes in three cultivars of Cucurbita L., including 9 Cucurbita moschata NHXs (CmoNHX1-CmoNHX9), 9 Cucurbita maxima NHXs ( CmaNHX1-CmaNHX9) and 8 Cucurbita pepo NHXs ( CpNHX1-CpNHX8). The evolutionary tree splits the 21 NHX genes into three subfamilies: the endosome (Endo) subfamily, the plasma membrane (PM) subfamily, and the vacuole (Vac) subfamily. All the NHX genes were irregularly distributed throughout the 21 chromosomes. 26 NHXs were examined for conserved motifs and intron-exon organization. These findings suggested that the genes in the same subfamily may have similar functions while genes in other subfamilies may have functional diversity. The circular phylogenetic tree and collinearity analysis of multi-species revealed that Cucurbita L. had a substantially greater homology relationship than Populus trichocarpa and Arabidopsis thaliana in terms of NHX gene homology. We initially examined the cis-acting elements of the 26 NHXs in order to investigate how they responded to salt stress. We discovered that the CmoNHX1, CmaNHX1, CpNHX1, CmoNHX5, CmaNHX5, and CpNHX5 all had numerous ABRE and G-box cis-acting elements that were important to salt stress. Previous transcriptome data showed that in the mesophyll and veins of leaves, many CmoNHXs and CmaNHXs, such as CmoNHX1, responded significantly to salt stress. In addition, we heterologously expressed in A. thaliana plants in order to further confirm the response of CmoNHX1 to salt stress. The findings demonstrated that during salt stress, A. thaliana that had CmoNHX1 heterologously expression was found to have decreased salt tolerance. This study offers important details that will aid in further elucidating the molecular mechanism of NHX under salt stress.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TBtools - an integrative toolkit developed for interactive analyses of big biological data

            The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clustal W and Clustal X version 2.0.

              The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                14 March 2023
                2023
                : 14
                : 1136810
                Affiliations
                [1] 1School of Resources and Environmental Sciences, Henan Institute of Science and Technology , Xinxiang, China
                [2] 2School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology , Xinxiang, China
                [3] 3Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants , Xinxiang, China
                Author notes

                Edited by: Sunil Kumar Sahu, Beijing Genomics Institute (BGI), China

                Reviewed by: Hongxia Zhang, Ludong University, China; Dixit Sharma, Central University of Himachal Pradesh, India

                *Correspondence: Jingping Yuan, jpyuan666@ 123456163.com

                This article was submitted to Plant Bioinformatics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2023.1136810
                10043322
                36998676
                7dbcfd88-4e6a-4584-aa26-a51d72ca9eed
                Copyright © 2023 Shen, Yuan, Li, Chen, Li, Wang, Liu and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 January 2023
                : 28 February 2023
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 51, Pages: 15, Words: 6116
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                This work was mainly supported by the Henan Province Science Foundation for Youths. (222300420160), the National Natural Science Foundation of China (Nos. 32102393), the Scientific Research Foundation for High-level Talent (103010620001/015 and 2017034). Funding body has no role in the study design, data collection, analysis and manuscript writing.
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                cucurbita l.,na+/h+ antiporter,evolutionary relationship,nhx1,expression pattern

                Comments

                Comment on this article