9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opposing comparable large effects of fine aerosols and coarse sea spray on marine warm clouds

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fine aerosols, by acting as cloud condensation nuclei, suppress rainfall and enhance the albedo and coverage of marine warm clouds, thereby partly counteracting the greenhouse-induced warming. While this is relatively well documented, the co-existing opposite effects of giant cloud condensation nuclei from coarse sea spray aerosols are poorly quantified. Here, satellite measurements show that the effects of coarse sea spray aerosols have comparable magnitudes with opposite sign to those of fine aerosols. For fixed cloud liquid water path and coarse sea spray aerosols, increasing fine aerosols decreased rainfall flux and cloud drop effective radius by a factor of 1/4 and 40%, respectively. Conversely, for fixed fine aerosols and cloud liquid water path, added coarse sea spray aerosols enhanced rainfall flux and cloud drop effective radius by a factor of 4 and 35%, respectively. These large and contrasting effects are independent on meteorological conditions. These processes must be fully incorporated into climate models to faithfully represent aerosol effects on clouds, precipitation, and radiative forcing.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

          The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosols, cloud microphysics, and fractional cloudiness.

            Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle-a process that regulates the liquid-water content and the energetics of shallow marine clouds. The resulting increase in the global albedo would be in addition to the increase due to enhancement in reflectivity associated with a decrease in droplet size and would contribute to a cooling of the earth's surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation

              The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA’s previous satellite era (1980 – onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.
                Bookmark

                Author and article information

                Contributors
                Journal
                Communications Earth & Environment
                Commun Earth Environ
                Springer Science and Business Media LLC
                2662-4435
                December 2022
                October 07 2022
                : 3
                : 1
                Article
                10.1038/s43247-022-00562-y
                7d5f71eb-c0d1-48dc-a4fe-93e12f7c1cca
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article