7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tumor glycolysis, an essential sweet tooth of tumor cells

      , ,
      Seminars in Cancer Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references285

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fundamentals of cancer metabolism

          Researchers provide a conceptual framework to understand current knowledge of the fundamentals of cancer metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.

            Elevated lactate dehydrogenase A (LDHA) expression is associated with poor outcome in tumor patients. Here we show that LDHA-associated lactic acid accumulation in melanomas inhibits tumor surveillance by T and NK cells. In immunocompetent C57BL/6 mice, tumors with reduced lactic acid production (Ldha(low)) developed significantly slower than control tumors and showed increased infiltration with IFN-γ-producing T and NK cells. However, in Rag2(-/-)γc(-/-) mice, lacking lymphocytes and NK cells, and in Ifng(-/-) mice, Ldha(low) and control cells formed tumors at similar rates. Pathophysiological concentrations of lactic acid prevented upregulation of nuclear factor of activated T cells (NFAT) in T and NK cells, resulting in diminished IFN-γ production. Database analyses revealed negative correlations between LDHA expression and T cell activation markers in human melanoma patients. Our results demonstrate that lactic acid is a potent inhibitor of function and survival of T and NK cells leading to tumor immune escape.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism

              The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.
                Bookmark

                Author and article information

                Journal
                Seminars in Cancer Biology
                Seminars in Cancer Biology
                Elsevier BV
                1044579X
                November 2022
                November 2022
                : 86
                : 1216-1230
                Article
                10.1016/j.semcancer.2022.09.007
                36330953
                7d51eb56-075a-4539-884b-11686fc4f6b1
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article