91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new ‘hierarchical view’ of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UniProt: a hub for protein information

          UniProt is an important collection of protein sequences and their annotations, which has doubled in size to 80 million sequences during the past year. This growth in sequences has prompted an extension of UniProt accession number space from 6 to 10 characters. An increasing fraction of new sequences are identical to a sequence that already exists in the database with the majority of sequences coming from genome sequencing projects. We have created a new proteome identifier that uniquely identifies a particular assembly of a species and strain or subspecies to help users track the provenance of sequences. We present a new website that has been designed using a user-experience design process. We have introduced an annotation score for all entries in UniProt to represent the relative amount of knowledge known about each protein. These scores will be helpful in identifying which proteins are the best characterized and most informative for comparative analysis. All UniProt data is provided freely and is available on the web at http://www.uniprot.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAFFT version 5: improvement in accuracy of multiple sequence alignment

            The accuracy of multiple sequence alignment program MAFFT has been improved. The new version (5.3) of MAFFT offers new iterative refinement options, H-INS-i, F-INS-i and G-INS-i, in which pairwise alignment information are incorporated into objective function. These new options of MAFFT showed higher accuracy than currently available methods including TCoffee version 2 and CLUSTAL W in benchmark tests consisting of alignments of >50 sequences. Like the previously available options, the new options of MAFFT can handle hundreds of sequences on a standard desktop computer. We also examined the effect of the number of homologues included in an alignment. For a multiple alignment consisting of ∼8 sequences with low similarity, the accuracy was improved (2–10 percentage points) when the sequences were aligned together with dozens of their close homologues (E-value < 10−5–10−20) collected from a database. Such improvement was generally observed for most methods, but remarkably large for the new options of MAFFT proposed here. Thus, we made a Ruby script, mafftE.rb, which aligns the input sequences together with their close homologues collected from SwissProt using NCBI-BLAST.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PANTHER: a library of protein families and subfamilies indexed by function.

              In the genomic era, one of the fundamental goals is to characterize the function of proteins on a large scale. We describe a method, PANTHER, for relating protein sequence relationships to function relationships in a robust and accurate way. PANTHER is composed of two main components: the PANTHER library (PANTHER/LIB) and the PANTHER index (PANTHER/X). PANTHER/LIB is a collection of "books," each representing a protein family as a multiple sequence alignment, a Hidden Markov Model (HMM), and a family tree. Functional divergence within the family is represented by dividing the tree into subtrees based on shared function, and by subtree HMMs. PANTHER/X is an abbreviated ontology for summarizing and navigating molecular functions and biological processes associated with the families and subfamilies. We apply PANTHER to three areas of active research. First, we report the size and sequence diversity of the families and subfamilies, characterizing the relationship between sequence divergence and functional divergence across a wide range of protein families. Second, we use the PANTHER/X ontology to give a high-level representation of gene function across the human and mouse genomes. Third, we use the family HMMs to rank missense single nucleotide polymorphisms (SNPs), on a database-wide scale, according to their likelihood of affecting protein function.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 January 2017
                28 November 2016
                28 November 2016
                : 45
                : Database issue , Database issue
                : D183-D189
                Affiliations
                Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 323 442 7975; Fax: +1 323 442 7995; Email: pdthomas@ 123456usc.edu
                Correspondence may also be addressed to Huaiyu Mi. Tel: +1 323 442 7994; Fax: +1 323 442 7995; Email: huaiyumi@ 123456usc.edu
                Article
                10.1093/nar/gkw1138
                5210595
                27899595
                7d2cb650-a2a1-416e-beaf-3f1a9cd52bd1
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 16 November 2016
                : 27 October 2016
                : 05 October 2016
                Page count
                Pages: 7
                Categories
                Database Issue
                Custom metadata
                04 January 2017

                Genetics
                Genetics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content198

                Cited by987

                Most referenced authors903