17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of the soil respiration response to soil reclamation in a coastal wetland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The soil carbon (C) pools in coastal wetlands are known as “blue C” and have been damaged extensively owing to climate change and land reclamation. Because soil respiration (RS) is the primary mechanism through which soil carbon is released into the atmosphere at a global scale, investigating the dynamic characteristics of the soil respiration rate in reclaimed coastal wetlands is necessary to understand its important role in maintaining the global C cycle. In the present study, seasonal and diurnal changes in soil respiration were monitored in one bare wetland (CK) and two reclaimed wetlands (CT, a cotton monoculture pattern, and WM, a wheat–maize continuous cropping pattern) in the Yellow River Delta. At the diurnal scale, the RS at the three study sites displayed single-peak curves, with the lowest values occurring at midnight (00:00 a.m.) and the highest values occurring at midday (12:00 a.m.). At the seasonal scale, the mean diurnal RS of the CK, CT and WM in April was 0.24, 0.26 and 0.79 μmol CO 2 m −2 s −1, and it increased to a peak in August for these areas. Bare wetland conversion to croplands significantly elevated the soil organic carbon (SOC) pool. The magnitude of the RS was significantly different at the three sites, and the yearly total amounts of CO 2 efflux were 375, 513 and 944 g CO 2·m −2 for the CK, CT and WM, respectively. At the three study sites, the surface soil temperature had a significant and positive relationship to the RS at both the diurnal and seasonal scales, and it accounted for 20–52% of the seasonal variation in the daytime RS. The soil water content showed a significant but negative relationship to the RS on diurnal scale only at the CK site, while it significantly increased with the RS on seasonal scale at all study sites. Although the RS showed a noticeable relationship to the combination of soil temperature and water content, the synergic effects of these two environment factors were not much higher than the individual effects. In addition, the correlation analysis showed that the RS was also influenced by the soil physico-chemical properties and that the soil total nitrogen had a closer positive relationship to the RS than the other nutrients, indicating that the soil nitrogen content plays a more important role in promoting carbon loss.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature-associated increases in the global soil respiration record.

            Soil respiration, R(S), the flux of microbially and plant-respired carbon dioxide (CO(2)) from the soil surface to the atmosphere, is the second-largest terrestrial carbon flux. However, the dynamics of R(S) are not well understood and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses and fundamental biokinetics all suggest that R(S) should change with climate. This has been difficult to confirm observationally because of the high spatial variability of R(S), inaccessibility of the soil medium and the inability of remote-sensing instruments to measure R(S) on large scales. Despite these constraints, it may be possible to discern climate-driven changes in regional or global R(S) values in the extant four-decade record of R(S) chamber measurements. Here we construct a database of worldwide R(S) observations matched with high-resolution historical climate data and find a previously unknown temporal trend in the R(S) record after accounting for mean annual climate, leaf area, nitrogen deposition and changes in CO(2) measurement technique. We find that the air temperature anomaly (the deviation from the 1961-1990 mean) is significantly and positively correlated with changes in R(S). We estimate that the global R(S) in 2008 (that is, the flux integrated over the Earth's land surface over 2008) was 98 +/- 12 Pg C and that it increased by 0.1 Pg C yr(-1) between 1989 and 2008, implying a global R(S) response to air temperature (Q(10)) of 1.5. An increasing global R(S) value does not necessarily constitute a positive feedback to the atmosphere, as it could be driven by higher carbon inputs to soil rather than by mobilization of stored older carbon. The available data are, however, consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermal adaptation of soil microbial respiration to elevated temperature.

              In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a > 15 year soil warming experiment in a mid-latitude forest, we show that the apparent 'acclimation' of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass-specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.
                Bookmark

                Author and article information

                Contributors
                chwf@sdau.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 February 2021
                3 February 2021
                2021
                : 11
                : 2911
                Affiliations
                [1 ]GRID grid.440622.6, ISNI 0000 0000 9482 4676, College of Resources and Environment, , Shandong Agricultural University, ; Tai’an, 271018 China
                [2 ]Shandong Provincial Engineering and Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China
                Article
                82376
                10.1038/s41598-021-82376-0
                7859388
                33536447
                7d26ba4f-8e97-4d08-b642-6038963a6fd6
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 March 2020
                : 20 January 2021
                Funding
                Funded by: Joint Funds of the National Natural Science Foundation of China
                Award ID: U1906221
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                climate sciences,ecology,environmental sciences,solid earth sciences
                Uncategorized
                climate sciences, ecology, environmental sciences, solid earth sciences

                Comments

                Comment on this article