20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1083-351X
          0021-9258
          Nov 22 2013
          : 288
          : 47
          Affiliations
          [1 ] Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201.
          [2 ] The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.
          [3 ] Centre de Recherche sur le Cancer de l'Université Laval, CRCHU-Q, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada.
          [4 ] Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104.
          [5 ] Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201. Electronic address: lsamavat@med.wayne.edu.
          Article
          S0021-9258(19)54376-9
          10.1074/jbc.M113.492702
          3837136
          24126911
          7d209c69-3fc2-44ad-8182-1acfa1788ec9
          History

          Akt PKB,Dual Specificity Phosphoprotein Phosphatase,MAP Kinases (MAPKs),Signal Transduction,mTOR Complex (mTORC)

          Comments

          Comment on this article