76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population genomic analyses of early-phase Atlantic Salmon ( Salmo salar) domestication/captive breeding

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Domestication can have adverse genetic consequences, which may reduce the fitness of individuals once released back into the wild. Many wild Atlantic salmon ( Salmo salarL.) populations are threatened by anthropogenic influences, and they are supplemented with captively bred fish. The Atlantic salmon is also widely used in selective breeding programs to increase the mean trait values for desired phenotypic traits. We analyzed a genomewide set of SNPs in three domesticated Atlantic salmon strains and their wild conspecifics to identify loci underlying domestication. The genetic differentiation between domesticated strains and wild populations was low ( F ST < 0.03), and domesticated strains harbored similar levels of genetic diversity compared to their wild conspecifics. Only a few loci showed footprints of selection, and these loci were located in different linkage groups among the different wild population/hatchery strain comparisons. Simulated scenarios indicated that differentiation in quantitative trait loci exceeded that in neutral markers during the early phases of divergence only when the difference in the phenotypic optimum between populations was large. This study indicates that detecting selection using standard approaches in the early phases of domestication might be challenging unless selection is strong and the traits under selection show simple inheritance patterns.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

          A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular signatures of natural selection.

            There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Divergent selection and heterogeneous genomic divergence.

              Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome-wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) 'outlier loci' with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs ['isolation by adaptation' (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5-10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation.
                Bookmark

                Author and article information

                Journal
                Evol Appl
                Evol Appl
                eva
                Evolutionary Applications
                BlackWell Publishing Ltd (Oxford, UK )
                1752-4571
                1752-4571
                January 2015
                20 November 2014
                : 8
                : 1
                : 93-107
                Affiliations
                [1 ]Division of Genetics and Physiology, Department of Biology, University of Turku Turku, Finland
                [2 ]Department of Aquaculture, Estonian University of Life Sciences Tartu, Estonia
                [3 ]Aquaculture and Fisheries Development Centre, School of Biological, Earth, and Environmental Sciences, University College Cork Cork, Ireland
                [4 ]Marine Institute, Furnace Newport, Co. Mayo, Ireland
                Author notes
                Correspondence Hannu Mäkinen, Division of Genetics and Physiology, Department of Biology, University of Turku, 20014 Turku, Finland., Tel.: +358 2 333 5562;, fax: +358 2 333 6680;, e-mail: hasama@ 123456utu.fi
                Article
                10.1111/eva.12230
                4310584
                25667605
                7d1fca86-ee1f-42e6-93d2-9000703e41ae
                © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 June 2014
                : 10 October 2014
                Categories
                Original Articles

                Evolutionary Biology
                adaptation,aquaculture,captive populations,ecological genetics,population genetics – empirical

                Comments

                Comment on this article