8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate to form a nitrile that is hydrolyzed to ammonium by the nitrilase NitC, whereas cyanate assimilation requires a cyanase that catalyzes cyanate decomposition to ammonium and carbon dioxide. The P. pseudoalcaligenes CECT5344 cynFABDS gene cluster codes for the putative transcriptional regulator CynF, the ABC-type cyanate transporter CynABD, and the cyanase CynS. In this study, transcriptional analysis revealed that the structural cynABDS genes constitute a single transcriptional unit, which was induced by cyanate and repressed by ammonium. Mutational characterization of the cyn genes indicated that CynF was essential for cynABDS gene expression and that nitrate/nitrite transporters may be involved in cyanate uptake, in addition to the CynABD transport system. Biodegradation of hazardous jewelry wastewater containing high amounts of cyanide and metals was achieved in a batch reactor operating at an alkaline pH after chemical treatment with hydrogen peroxide to oxidize cyanide to cyanate.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Cyanate as energy source for nitrifiers

          Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis 1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems 2 , is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyanide in industrial wastewaters and its removal: a review on biotreatment.

            Cyanides are produced by certain bacteria, fungi, and algae, and may be found in plants and some foods, such as lima beans and almonds. Although cyanides are present in small concentrations in these plants and microorganisms, their large-scale presence in the environment is attributed to the human activities as cyanide compounds are extensively used in industries. Bulk of cyanide occurrence in environment is mainly due to metal finishing and mining industries. Although cyanide can be removed and recovered by several processes, it is still widely discussed and examined due to its potential toxicity and environmental impact. From an economic standpoint, the biological treatment method is cost-effective as compared to chemical and physical methods for cyanide removal. Several microbial species can effectively degrade cyanide into less toxic products. During metabolism, they use cyanide as a nitrogen and carbon source converting it to ammonia and carbonate, if appropriate conditions are maintained. Biological treatment of cyanide under anaerobic as well as aerobic conditions is possible. The present review describes the mechanism and advances in the use of biological treatment for the removal of cyanide compounds and its advantages over other treatment processes. It also includes various microbial pathways for their removal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological degradation of cyanide compounds.

              Cyanide compounds are produced as waste products of a number of industrial processes and several routes for their removal from the environment are under investigation, including the use of biodegradation. The most recent developments in this area have come from studies of the hydrolytic and oxidative pathways for biodegradation and the conditions that affect their activity. The biodegradation of cyanide under anaerobic conditions has also recently demonstrated the feasibility for concomitant biogas generation, a possible economic benefit of the process. Significant advances have been reported in the use of plants for the phytoremediation of cyanide compounds and evidence for the biodegradation of thiocyanate and metal-cyanide complexes has become available. Despite these advances, however, physical and economic factors still limit the application of cyanide biodegradation, as do competing technologies.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 June 2019
                June 2019
                : 20
                : 12
                : 3008
                Affiliations
                [1 ]Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; bb2samel@ 123456uco.es (L.P.S.); isaibga@ 123456gmail.com (M.I.I.); b42lualv@ 123456uco.es (V.M.L.-A.); bb2rorum@ 123456uco.es (M.D.R.)
                [2 ]Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; bv1cahap@ 123456uco.es
                Author notes
                [* ]Correspondence: bb1movic@ 123456uco.es ; Tel: +34-957218588
                [†]

                These authors contribute equally to this work.

                Author information
                https://orcid.org/0000-0002-3543-1615
                https://orcid.org/0000-0002-1330-202X
                https://orcid.org/0000-0003-1447-4795
                https://orcid.org/0000-0001-7173-8641
                https://orcid.org/0000-0002-8149-5716
                Article
                ijms-20-03008
                10.3390/ijms20123008
                6627978
                31226739
                7d1ae507-7925-4e6b-9b3b-0f9fc33f7ea2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 May 2019
                : 18 June 2019
                Categories
                Article

                Molecular biology
                pseudomonas pseudoalcaligenes,cyanate,cyanase,cyanide,jewelry residue,nitrate,nitrite
                Molecular biology
                pseudomonas pseudoalcaligenes, cyanate, cyanase, cyanide, jewelry residue, nitrate, nitrite

                Comments

                Comment on this article