20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.

          Abstract

          The current information on the diversity and activity of shallow freshwater subsurface habitats is discussed within the context of the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and how biofilms may respond and impact shallow terrestrial subsurface aquifers.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial biogeography: putting microorganisms on the map.

            We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Community structure and metabolism through reconstruction of microbial genomes from the environment.

              Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Ecol
                FEMS Microbiol. Ecol
                femsec
                FEMS Microbiology Ecology
                Oxford University Press
                0168-6496
                1574-6941
                27 September 2018
                December 2018
                27 September 2018
                : 94
                : 12
                : fiy191
                Affiliations
                [1 ]Center for Biofilm Engineering, Montana State University, Bozeman, MT
                [2 ]Department of Microbiology & Immunology, Montana State University, Bozeman, MT
                [3 ]Department of Biochemistry, University of Missouri, Columbia, MO
                [4 ]Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
                [5 ]Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
                [6 ]Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
                [7 ]Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA
                [8 ]Department of Civil Engineering, Montana State University, Montana State University, Bozeman, MT
                [9 ]ENIGMA ( www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
                Author notes
                Corresponding author: 366 Barnard Hall, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717. Tel: 406-994-7340; E-mail: matthew.fields@ 123456biofilm.montana.edu
                Author information
                http://orcid.org/0000-0001-9053-1849
                Article
                fiy191
                10.1093/femsec/fiy191
                6192502
                30265315
                7cbd5906-e857-4b27-b15d-ec4f97d6622a
                © FEMS 2018.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 30 March 2018
                : 26 September 2018
                Page count
                Pages: 16
                Categories
                Minireview

                Microbiology & Virology
                groundwater,sediment,aquifer,ecology,activity
                Microbiology & Virology
                groundwater, sediment, aquifer, ecology, activity

                Comments

                Comment on this article