6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tissue resident memory T cells in the respiratory tract

      review-article
      ,
      Mucosal Immunology
      Nature Publishing Group US

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19

          Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques

            Recent studies have reported protective efficacy of both natural immunity 1 and vaccine-induced immunity 2 – 7 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge in rhesus macaques. However, the importance of humoral and cellular immunity for protection against SARS-CoV-2 infection remains to be determined. Here we show that adoptive transfer of purified IgG from convalescent macaques protects naïve recipient rhesus macaques against SARS-CoV-2 challenge in a dose dependent fashion. Depletion of CD8+ T cells in convalescent animals partially abrogated the protective efficacy of natural immunity against SARS-CoV-2 re-challenge, suggesting the importance of cellular immunity in the context of waning or subprotective antibody titers. These data demonstrate that relatively low antibody titers are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may also contribute to protection if antibody responses are suboptimal. We also show that higher antibody titers are required for therapy of SARS-CoV-2 infection in macaques. These findings have important implications for the development of SARS-CoV-2 vaccines and immune-based therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two subsets of memory T lymphocytes with distinct homing potentials and effector functions.

              Naive T lymphocytes travel to T-cell areas of secondary lymphoid organs in search of antigen presented by dendritic cells. Once activated, they proliferate vigorously, generating effector cells that can migrate to B-cell areas or to inflamed tissues. A fraction of primed T lymphocytes persists as circulating memory cells that can confer protection and give, upon secondary challenge, a qualitatively different and quantitatively enhanced response. The nature of the cells that mediate the different facets of immunological memory remains unresolved. Here we show that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets. CCR7- memory cells express receptors for migration to inflamed tissues and display immediate effector function. In contrast, CCR7+ memory cells express lymph-node homing receptors and lack immediate effector function, but efficiently stimulate dendritic cells and differentiate into CCR7- effector cells upon secondary stimulation. The CCR7+ and CCR7- T cells, which we have named central memory (TCM) and effector memory (TEM), differentiate in a step-wise fashion from naive T cells, persist for years after immunization and allow a division of labour in the memory response.
                Bookmark

                Author and article information

                Contributors
                wakiml@unimelb.edu.au
                Journal
                Mucosal Immunol
                Mucosal Immunol
                Mucosal Immunology
                Nature Publishing Group US (New York )
                1933-0219
                1935-3456
                20 October 2021
                : 1-10
                Affiliations
                GRID grid.1008.9, ISNI 0000 0001 2179 088X, Department of Microbiology and Immunology, , The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, ; Melbourne, VIC 3000 Australia
                Article
                461
                10.1038/s41385-021-00461-z
                8526531
                34671115
                7cab0f49-670e-4d28-a54e-cebdd12e83c8
                © The Author(s), under exclusive licence to Society for Mucosal Immunology 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 25 June 2021
                : 27 September 2021
                : 1 October 2021
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article