56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Exposure and Health Effects of Inorganic and Elemental Mercury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium and brain function: a poorly recognized liaison.

          Molecular biology has recently contributed significantly to the recognition of selenium (Se)2 and Se-dependent enzymes as modulators of brain function. Increased oxidative stress has been proposed as a pathomechanism in neurodegenerative diseases including, among others, Parkinson's disease, stroke, and epilepsy. Glutathione peroxidases (GPx), thioredoxin reductases, and one methionine-sulfoxide-reductase are selenium-dependent enzymes involved in antioxidant defense and intracellular redox regulation and modulation. Selenium depletion in animals is associated with decreased activities of Se-dependent enzymes and leads to enhanced cell loss in models of neurodegenerative disease. Genetic inactivation of cellular GPx increases the sensitivity towards neurotoxins and brain ischemia. Conversely, increased GPx activity as a result of increased Se supply or overexpression ameliorates the outcome in the same models of disease. Genetic inactivation of selenoprotein P leads to a marked reduction of brain Se content, which has not been achieved by dietary Se depletion, and to a movement disorder and spontaneous seizures. Here we review the role of Se for the brain under physiological as well as pathophysiological conditions and highlight recent findings which open new vistas on an old essential trace element.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study

            Background The main forms of mercury (Hg) exposure in the general population are methylmercury (MeHg) from seafood, inorganic mercury (I-Hg) from food, and mercury vapor (Hg0) from dental amalgam restorations. While the distribution of MeHg in the body is described by a one compartment model, the distribution of I-Hg after exposure to elemental mercury is more complex, and there is no biomarker for I-Hg in the brain. The aim of this study was to elucidate the relationships between on the one hand MeHg and I-Hg in human brain and other tissues, including blood, and on the other Hg exposure via dental amalgam in a fish-eating population. In addition, the use of blood and toenails as biological indicator media for inorganic and organic mercury (MeHg) in the tissues was evaluated. Methods Samples of blood, brain (occipital lobe cortex), pituitary, thyroid, abdominal muscle and toenails were collected at autopsy of 30 deceased individuals, age from 47 to 91 years of age. Concentrations of total-Hg and I-Hg in blood and brain cortex were determined by cold vapor atomic fluorescence spectrometry and total-Hg in other tissues by sector field inductively coupled plasma-mass spectrometry (ICP-SFMS). Results The median concentrations of MeHg (total-Hg minus I-Hg) and I-Hg in blood were 2.2 and 1.0 μg/L, and in occipital lobe cortex 4 and 5 μg/kg, respectively. There was a significant correlation between MeHg in blood and occipital cortex. Also, total-Hg in toenails correlated with MeHg in both blood and occipital lobe. I-Hg in both blood and occipital cortex, as well as total-Hg in pituitary and thyroid were strongly associated with the number of dental amalgam surfaces at the time of death. Conclusion In a fish-eating population, intake of MeHg via the diet has a marked impact on the MeHg concentration in the brain, while exposure to dental amalgam restorations increases the I-Hg concentrations in the brain. Discrimination between mercury species is necessary to evaluate the impact on Hg in the brain of various sources of exposure, in particular, dental amalgam exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Does inorganic mercury play a role in Alzheimer's disease? A systematic review and an integrated molecular mechanism.

              Mercury is one of the most toxic substances known to humans. It has been introduced into the human environment and has also been widely used in medicine. Since circumstantial evidence exists that the pathology of Alzheimer's disease (AD) might be in part caused or exacerbated by inorganic mercury, we conducted a systematic review using a comprehensive search strategy. Studies were screened according to a pre-defined protocol. Two reviewers extracted relevant data independent of each other. One thousand and forty one references were scrutinized, and 106 studies fulfilled the inclusion criteria. Most studies were case control or comparative cohort studies. Thirty-two studies, out of 40 testing memory in individuals exposed to inorganic mercury, found significant memory deficits. Some autopsy studies found increased mercury levels in brain tissues of AD patients. Measurements of mercury levels in blood, urine, hair, nails, and cerebrospinal fluid were inconsistent. In vitro models showed that inorganic mercury reproduces all pathological changes seen in AD, and in animal models inorganic mercury produced changes that are similar to those seen in AD. Its high affinity for selenium and selenoproteins suggests that inorganic mercury may promote neurodegenerative disorders via disruption of redox regulation. Inorganic mercury may play a role as a co-factor in the development of AD. It may also increase the pathological influence of other metals. Our mechanistic model describes potential causal pathways. As the single most effective public health primary preventive measure, industrial, and medical usage of mercury should be eliminated as soon as possible.
                Bookmark

                Author and article information

                Journal
                J Prev Med Public Health
                J Prev Med Public Health
                JPMPH
                Journal of Preventive Medicine and Public Health
                The Korean Society for Preventive Medicine
                1975-8375
                2233-4521
                November 2012
                29 November 2012
                : 45
                : 6
                : 344-352
                Affiliations
                [1 ]Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
                [2 ]School of Health Sciences, Purdue University, West Lafayette, IN, USA.
                Author notes
                Corresponding author: Jung-Duck Park, MD, PhD. 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea. Tel: +82-2-820-5668, Fax: +82-2-815-9509, jdpark@ 123456cau.ac.kr
                Article
                10.3961/jpmph.2012.45.6.344
                3514464
                23230464
                7c8eeee5-9b2b-4b7f-8893-b0fe35f83f1e
                Copyright © 2012 The Korean Society for Preventive Medicine

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 September 2012
                : 17 October 2012
                Categories
                Special Article

                Public health
                inorganic mercury compounds,elemental mercury,biomarkers,kidney,public health,brain
                Public health
                inorganic mercury compounds, elemental mercury, biomarkers, kidney, public health, brain

                Comments

                Comment on this article