7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generative AI in healthcare: an implementation science informed translational path on application, integration and governance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Artificial intelligence (AI), particularly generative AI, has emerged as a transformative tool in healthcare, with the potential to revolutionize clinical decision-making and improve health outcomes. Generative AI, capable of generating new data such as text and images, holds promise in enhancing patient care, revolutionizing disease diagnosis and expanding treatment options. However, the utility and impact of generative AI in healthcare remain poorly understood, with concerns around ethical and medico-legal implications, integration into healthcare service delivery and workforce utilisation. Also, there is not a clear pathway to implement and integrate generative AI in healthcare delivery.

          Methods

          This article aims to provide a comprehensive overview of the use of generative AI in healthcare, focusing on the utility of the technology in healthcare and its translational application highlighting the need for careful planning, execution and management of expectations in adopting generative AI in clinical medicine. Key considerations include factors such as data privacy, security and the irreplaceable role of clinicians’ expertise. Frameworks like the technology acceptance model (TAM) and the Non-Adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) model are considered to promote responsible integration. These frameworks allow anticipating and proactively addressing barriers to adoption, facilitating stakeholder participation and responsibly transitioning care systems to harness generative AI’s potential.

          Results

          Generative AI has the potential to transform healthcare through automated systems, enhanced clinical decision-making and democratization of expertise with diagnostic support tools providing timely, personalized suggestions. Generative AI applications across billing, diagnosis, treatment and research can also make healthcare delivery more efficient, equitable and effective. However, integration of generative AI necessitates meticulous change management and risk mitigation strategies. Technological capabilities alone cannot shift complex care ecosystems overnight; rather, structured adoption programs grounded in implementation science are imperative.

          Conclusions

          It is strongly argued in this article that generative AI can usher in tremendous healthcare progress, if introduced responsibly. Strategic adoption based on implementation science, incremental deployment and balanced messaging around opportunities versus limitations helps promote safe, ethical generative AI integration. Extensive real-world piloting and iteration aligned to clinical priorities should drive development. With conscientious governance centred on human wellbeing over technological novelty, generative AI can enhance accessibility, affordability and quality of care. As these models continue advancing rapidly, ongoing reassessment and transparent communication around their strengths and weaknesses remain vital to restoring trust, realizing positive potential and, most importantly, improving patient outcomes.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies

          Background Many promising technological innovations in health and social care are characterized by nonadoption or abandonment by individuals or by failed attempts to scale up locally, spread distantly, or sustain the innovation long term at the organization or system level. Objective Our objective was to produce an evidence-based, theory-informed, and pragmatic framework to help predict and evaluate the success of a technology-supported health or social care program. Methods The study had 2 parallel components: (1) secondary research (hermeneutic systematic review) to identify key domains, and (2) empirical case studies of technology implementation to explore, test, and refine these domains. We studied 6 technology-supported programs—video outpatient consultations, global positioning system tracking for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organizing software, and integrated case management via data sharing—using longitudinal ethnography and action research for up to 3 years across more than 20 organizations. Data were collected at micro level (individual technology users), meso level (organizational processes and systems), and macro level (national policy and wider context). Analysis and synthesis was aided by sociotechnically informed theories of individual, organizational, and system change. The draft framework was shared with colleagues who were introducing or evaluating other technology-supported health or care programs and refined in response to feedback. Results The literature review identified 28 previous technology implementation frameworks, of which 14 had taken a dynamic systems approach (including 2 integrative reviews of previous work). Our empirical dataset consisted of over 400 hours of ethnographic observation, 165 semistructured interviews, and 200 documents. The final nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework included questions in 7 domains: the condition or illness, the technology, the value proposition, the adopter system (comprising professional staff, patient, and lay caregivers), the organization(s), the wider (institutional and societal) context, and the interaction and mutual adaptation between all these domains over time. Our empirical case studies raised a variety of challenges across all 7 domains, each classified as simple (straightforward, predictable, few components), complicated (multiple interacting components or issues), or complex (dynamic, unpredictable, not easily disaggregated into constituent components). Programs characterized by complicatedness proved difficult but not impossible to implement. Those characterized by complexity in multiple NASSS domains rarely, if ever, became mainstreamed. The framework showed promise when applied (both prospectively and retrospectively) to other programs. Conclusions Subject to further empirical testing, NASSS could be applied across a range of technological innovations in health and social care. It has several potential uses: (1) to inform the design of a new technology; (2) to identify technological solutions that (perhaps despite policy or industry enthusiasm) have a limited chance of achieving large-scale, sustained adoption; (3) to plan the implementation, scale-up, or rollout of a technology program; and (4) to explain and learn from program failures.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Generative Adversarial Networks: An Overview

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              How Does ChatGPT Perform on the United States Medical Licensing Examination? The Implications of Large Language Models for Medical Education and Knowledge Assessment

              Background Chat Generative Pre-trained Transformer (ChatGPT) is a 175-billion-parameter natural language processing model that can generate conversation-style responses to user input. Objective This study aimed to evaluate the performance of ChatGPT on questions within the scope of the United States Medical Licensing Examination Step 1 and Step 2 exams, as well as to analyze responses for user interpretability. Methods We used 2 sets of multiple-choice questions to evaluate ChatGPT’s performance, each with questions pertaining to Step 1 and Step 2. The first set was derived from AMBOSS, a commonly used question bank for medical students, which also provides statistics on question difficulty and the performance on an exam relative to the user base. The second set was the National Board of Medical Examiners (NBME) free 120 questions. ChatGPT’s performance was compared to 2 other large language models, GPT-3 and InstructGPT. The text output of each ChatGPT response was evaluated across 3 qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question. Results Of the 4 data sets, AMBOSS-Step1 , AMBOSS-Step2 , NBME-Free-Step1 , and NBME-Free-Step2 , ChatGPT achieved accuracies of 44% (44/100), 42% (42/100), 64.4% (56/87), and 57.8% (59/102), respectively. ChatGPT outperformed InstructGPT by 8.15% on average across all data sets, and GPT-3 performed similarly to random chance. The model demonstrated a significant decrease in performance as question difficulty increased ( P =.01) within the AMBOSS-Step1 data set. We found that logical justification for ChatGPT’s answer selection was present in 100% of outputs of the NBME data sets. Internal information to the question was present in 96.8% (183/189) of all questions. The presence of information external to the question was 44.5% and 27% lower for incorrect answers relative to correct answers on the NBME-Free-Step1 ( P <.001) and NBME-Free-Step2 ( P =.001) data sets, respectively. Conclusions ChatGPT marks a significant improvement in natural language processing models on the tasks of medical question answering. By performing at a greater than 60% threshold on the NBME-Free-Step-1 data set, we show that the model achieves the equivalent of a passing score for a third-year medical student. Additionally, we highlight ChatGPT’s capacity to provide logic and informational context across the majority of answers. These facts taken together make a compelling case for the potential applications of ChatGPT as an interactive medical education tool to support learning.
                Bookmark

                Author and article information

                Contributors
                sandeep.reddy@deakin.edu.au
                Journal
                Implement Sci
                Implement Sci
                Implementation Science : IS
                BioMed Central (London )
                1748-5908
                15 March 2024
                15 March 2024
                2024
                : 19
                : 27
                Affiliations
                Deakin School of Medicine, Waurn Ponds, Geelong, VIC 3215 Australia
                Author information
                http://orcid.org/0000-0002-5824-4900
                Article
                1357
                10.1186/s13012-024-01357-9
                10941464
                38491544
                7c8d28d1-e668-434d-9a77-0283a1f80c75
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 August 2023
                : 6 March 2024
                Categories
                Debate
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Medicine
                generative artificial intelligence,healthcare,implementation science,translation pathway

                Comments

                Comment on this article