Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proteomic parsimony through bipartite graph analysis improves accuracy and transparency.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assembling peptides identified from LC-MS/MS spectra into a list of proteins is a critical step in analyzing shotgun proteomics data. As one peptide sequence can be mapped to multiple proteins in a database, naïve protein assembly can substantially overstate the number of proteins found in samples. We model the peptide-protein relationships in a bipartite graph and use efficient graph algorithms to identify protein clusters with shared peptides and to derive the minimal list of proteins. We test the effects of this parsimony analysis approach using MS/MS data sets generated from a defined human protein mixture, a yeast whole cell extract, and a human serum proteome after MARS column depletion. The results demonstrate that the bipartite parsimony technique not only simplifies protein lists but also improves the accuracy of protein identification. We use bipartite graphs for the visualization of the protein assembly results to render the parsimony analysis process transparent to users. Our approach also groups functionally related proteins together and improves the comprehensibility of the results. We have implemented the tool in the IDPicker package. The source code and binaries for this protein assembly pipeline are available under Mozilla Public License at the following URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/.

          Related collections

          Author and article information

          Journal
          J Proteome Res
          Journal of proteome research
          American Chemical Society (ACS)
          1535-3893
          1535-3893
          Sep 2007
          : 6
          : 9
          Affiliations
          [1 ] Department of Biomedical Informatics, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8575, USA.
          Article
          NIHMS168858
          10.1021/pr070230d
          2810678
          17676885
          7c81c525-4554-444f-b10e-bc892e25ee8a
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content449

          Cited by92