14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: not found
          • Article: not found

          Visualization of an Oxygen-deficient Bottom Water Circulation in Osaka Bay, Japan

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂.

            Ozonolysis is a major tropospheric removal mechanism for unsaturated hydrocarbons and proceeds via "Criegee intermediates"--carbonyl oxides--that play a key role in tropospheric oxidation models. However, until recently no gas-phase Criegee intermediate had been observed, and indirect determinations of their reaction kinetics gave derived rate coefficients spanning orders of magnitude. Here, we report direct photoionization mass spectrometric detection of formaldehyde oxide (CH(2)OO) as a product of the reaction of CH(2)I with O(2). This reaction enabled direct laboratory determinations of CH(2)OO kinetics. Upper limits were extracted for reaction rate coefficients with NO and H(2)O. The CH(2)OO reactions with SO(2) and NO(2) proved unexpectedly rapid and imply a substantially greater role of carbonyl oxides in models of tropospheric sulfate and nitrate chemistry than previously assumed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Parametrization of the ion–polar molecule collision rate constant by trajectory calculations

                Bookmark

                Author and article information

                Journal
                PPCPFQ
                Phys. Chem. Chem. Phys.
                Phys. Chem. Chem. Phys.
                Royal Society of Chemistry (RSC)
                1463-9076
                1463-9084
                2016
                2016
                : 18
                : 15
                : 10241-10254
                Article
                10.1039/C6CP00053C
                27021601
                7c23f435-ff2b-400a-83d4-fb0b3d44366c
                © 2016
                History

                Comments

                Comment on this article