62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity

      research-article
      1 , * , 1 , 2 , 1
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain.

          Author Summary

          Macroscopic regions in the grey matter of the human brain are intricately connected by white-matter pathways, forming the extremely complex network of the brain. Analysing this brain network may provide us insights on how anatomy enables brain function and, ultimately, cognition and consciousness. Various important principles of organization have indeed been consistently identified in the brain's structural connectivity, such as a small-world and modular architecture. However, it is currently unclear which of these principles are functionally relevant, and which are merely the consequence of more basic constraints of the brain, such as its three-dimensional spatial embedding into the limited volume of the skull or the high metabolic cost of long-range connections. In this paper, we model what aspects of the structural organization of the brain are affected by its wiring constraints by assessing how far these aspects are preserved in brain-like networks with varying spatial wiring constraints. We find that all investigated features of brain organization also appear in spatially constrained networks, but we also discover that several of the features are more pronounced in the brain than its wiring constraints alone would necessitate. These findings suggest the functional relevance of the ‘over-expressed’ properties of brain architecture.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rich-club organization of the human connectome.

            The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small-world brain networks.

              Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2014
                3 April 2014
                : 10
                : 4
                : e1003557
                Affiliations
                [1 ]Sussex Neuroscience, CCNR, Informatics, University of Sussex, Falmer, Brighton, United Kingdom
                [2 ]Sackler Centre for Consciousness Science, Informatics, University of Sussex, Falmer, Brighton, United Kingdom
                Indiana University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DS AKS TN. Performed the experiments: DS. Analyzed the data: DS TN. Wrote the paper: DS AKS TN. Designed software used in analysis: DS.

                Article
                PCOMPBIOL-D-13-00965
                10.1371/journal.pcbi.1003557
                3974635
                24699277
                7c11d9bc-6a33-4a2c-8212-7e1a70577d8a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 May 2013
                : 17 February 2014
                Page count
                Pages: 24
                Funding
                DS was funded by the Graduate Teaching Assistantship scheme of the University of Sussex ( www.sussex.ac.uk). AKS is funded by EPSRC fellowship EP/G007543/1, by ERC project CEEDS (FP7 ICT, project 258749), and by the Dr. Mortimer and Dame Theresa Sackler Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Connectomics
                Neuroscience

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content12

                Cited by35

                Most referenced authors484