36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plant hormones in salt stress tolerance

      ,
      Journal of Plant Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Gene networks involved in drought stress response and tolerance.

          Plants respond to survive under water-deficit conditions via a series of physiological, cellular, and molecular processes culminating in stress tolerance. Many drought-inducible genes with various functions have been identified by molecular and genomic analyses in Arabidopsis, rice, and other plants, including a number of transcription factors that regulate stress-inducible gene expression. The products of stress-inducible genes function both in the initial stress response and in establishing plant stress tolerance. In this short review, recent progress resulting from analysis of gene expression during the drought-stress response in plants as well as in elucidating the functions of genes implicated in the stress response and/or stress tolerance are summarized. A description is also provided of how various genes involved in stress tolerance were applied in genetic engineering of dehydration stress tolerance in transgenic Arabidopsis plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of gibberellin signalling in plant responses to abiotic stress.

            Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA) class of growth hormones in the response to abiotic stress is becoming increasingly evident. Reduction of GA levels and signalling has been shown to contribute to plant growth restriction on exposure to several stresses, including cold, salt and osmotic stress. Conversely, increased GA biosynthesis and signalling promote growth in plant escape responses to shading and submergence. In several cases, GA signalling has also been linked to stress tolerance. The transcriptional regulation of GA metabolism appears to be a major point of regulation of the GA pathway, while emerging evidence for interaction of the GA-signalling molecule DELLA with components of the signalling pathway for the stress hormone jasmonic acid suggests additional mechanisms by which GA signalling may integrate multiple hormone signalling pathways in the response to stress. Here, we review the evidence for the role of GA in these processes, and the regulation of the GA signalling pathway on exposure to abiotic stress. The potential mechanisms by which GA signalling modulates stress tolerance are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.

              Small-molecule hormones govern every aspect of the biology of plants. Many processes, such as growth, are regulated in similar ways by multiple hormones, and recent studies have revealed extensive crosstalk among different hormonal signaling pathways. These results have led to the proposal that a common set of signaling components may integrate inputs from multiple hormones to regulate growth. In this study, we tested this proposal by asking whether different hormones converge on a common set of transcriptional targets in Arabidopsis seedlings. Using publicly available microarray data, we analyzed the transcriptional effects of seven hormones, including abscisic acid, gibberellin, auxin, ethylene, cytokinin, brassinosteroid, and jasmonate. A high-sensitivity analysis revealed a surprisingly low number of common target genes. Instead, different hormones appear to regulate distinct members of protein families. We conclude that there is not a core transcriptional growth-regulatory module in young Arabidopsis seedlings.
                Bookmark

                Author and article information

                Journal
                Journal of Plant Biology
                J. Plant Biol.
                Springer Nature
                1226-9239
                1867-0725
                June 2015
                May 2015
                : 58
                : 3
                : 147-155
                Article
                10.1007/s12374-015-0103-z
                7c0459d7-cc2c-4f45-84aa-89842659e209
                © 2015
                History

                Comments

                Comment on this article