30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review : Nanomaterials in the environment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references337

          • Record: found
          • Abstract: not found
          • Article: not found

          Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.

            Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO(2), ZnO, and CeO(2), were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO(2) nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO(2) suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO(2) was processed by the same uptake pathways as CeO(2) but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probing the Cytotoxicity of Semiconductor Quantum Dots

              With their bright, photostable fluorescence, semiconductor quantum dots show promise as alternatives to organic dyes for biological labeling. Questions about their potential cytotoxicity, however, remain unanswered. While cytotoxicity of bulk cadmium selenide (CdSe) is well documented, a number of groups have suggested that CdSe QDs are cytocompatible, at least with some immortalized cell lines. Using primary hepatocytes as a liver model, we found that CdSe-core QDs were indeed acutely toxic under certain conditions. Specifically, we found that the cytotoxicity of QDs was modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings. Our data further suggests that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the CdSe lattice. When appropriately coated, CdSe-core QDs can be rendered non-toxic and used to track cell migration and reorganization in vitro. Our results inform design criteria for the use of QDs in vitro and especially in vivo where deterioration over time may occur.
                Bookmark

                Author and article information

                Journal
                Environmental Toxicology and Chemistry
                Environ Toxicol Chem
                Wiley
                07307268
                August 2018
                August 2018
                July 16 2018
                : 37
                : 8
                : 2029-2063
                Affiliations
                [1 ]Center for Environmental Nanoscience and Risk; Department of Environmental Health Sciences; Arnold School of Public Health; University of South Carolina; Columbia South Carolina USA
                [2 ]Centre for Environmental Contaminants Research; CSIRO Land and Water; Kirrawee New South Wales Australia
                [3 ]Department of Civil and Environmental Engineering; Rice University; Houston Texas USA
                [4 ]US Geological Survey; Menlo Park California USA
                [5 ]University of Plymouth; Plymouth Devon United Kingdom
                [6 ]University of Adelaide; Glen Osmond South Australia Australia
                [7 ]Soil and Water Sciences Department; University of Florida; Gainesville Florida USA
                [8 ]Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag Dübendorf Switzerland
                [9 ]School of Architecture; Civil and Environmental Engineering; Federal Institute of Technology Lausanne; Lausanne Switzerland
                [10 ]Institute of Biogeochemistry and Pollutant Dynamics; Swiss Federal Institute of Technology Zürich; Zürich Switzerland
                Article
                10.1002/etc.4147
                29633323
                7be1ce2c-d0f6-4d05-bc1c-b6c4e492b0b8
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article