59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnetic Nanoparticles: From Design and Synthesis to Real World Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.

          Related collections

          Most cited references228

          • Record: found
          • Abstract: found
          • Article: not found

          Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices

          Sun, Murray, Weller (2000)
          Synthesis of monodisperse iron-platinum (FePt) nanoparticles by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine stabilizers is reported. The FePt particle composition is readily controlled, and the size is tunable from 3- to 10-nanometer diameter with a standard deviation of less than 5%. These nanoparticles self-assemble into three-dimensional superlattices. Thermal annealing converts the internal particle structure from a chemically disordered face-centered cubic phase to the chemically ordered face-centered tetragonal phase and transforms the nanoparticle superlattices into ferromagnetic nanocrystal assemblies. These assemblies are chemically and mechanically robust and can support high-density magnetization reversal transitions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles in medicine: therapeutic applications and developments.

            Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hyperthermia in combined treatment of cancer.

              Hyperthermia, the procedure of raising the temperature of tumour-loaded tissue to 40-43 degrees C, is applied as an adjunctive therapy with various established cancer treatments such as radiotherapy and chemotherapy. The potential to control power distributions in vivo has been significantly improved lately by the development of planning systems and other modelling tools. This increased understanding has led to the design of multiantenna applicators (including their transforming networks) and implementation of systems for monitoring of E-fields (eg, electro-optical sensors) and temperature (particularly, on-line magnetic resonance tomography). Several phase III trials comparing radiotherapy alone or with hyperthermia have shown a beneficial effect of hyperthermia (with existing standard equipment) in terms of local control (eg, recurrent breast cancer and malignant melanoma) and survival (eg, head and neck lymph-node metastases, glioblastoma, cervical carcinoma). Therefore, further development of existing technology and elucidation of molecular mechanisms are justified. In recent molecular and biological investigations there have been novel applications such as gene therapy or immunotherapy (vaccination) with temperature acting as an enhancer, to trigger or to switch mechanisms on and off. However, for every particular temperature-dependent interaction exploited for clinical purposes, sophisticated control of temperature, spatially as well as temporally, in deep body regions will further improve the potential.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                29 August 2017
                September 2017
                : 7
                : 9
                : 243
                Affiliations
                [1 ]Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic; george.kudr@ 123456centrum.cz (J.K.); yazanhaddad@ 123456hotmail.com (Y.H.); oliver@ 123456centrum.cz (L.R.); zbynek.heger@ 123456mendelu.cz (Z.H.); vojtech.adam@ 123456mendelu.cz (V.A.)
                [2 ]Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic
                [3 ]CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic; cernak@ 123456gimmel.ip.fmph.uniba.sk
                Author notes
                [* ]Correspondence: zitkao@ 123456seznam.cz ; Tel.: +420-545-133-350
                Author information
                https://orcid.org/0000-0002-7844-4336
                https://orcid.org/0000-0002-8288-3999
                Article
                nanomaterials-07-00243
                10.3390/nano7090243
                5618354
                28850089
                7bd54554-3708-4288-9e62-76c698cf61f3
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 June 2017
                : 22 August 2017
                Categories
                Review

                magnetic resonance imaging,nanocarrier,nanoscale,preconcentration,separation,silica,theranostics,therapeutic agents

                Comments

                Comment on this article