0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Design, Synthesis, and Bioevaluation of a Novel Hybrid Molecular Pyrrolobenzodiazepine–Anthracenecarboxyimide as a Payload for Antibody–Drug Conjugate

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel series of hybrid molecules combining pyrrolobenzodiazepine (PBD) and anthracenecarboxyimide pharmacophores were designed, synthesized, and tested for in vitro cytotoxicity against various cancer cell lines. The most potent compound from this series, 37b3, exhibited a subnanomolar level of cytotoxicity with an IC50 of 0.17-0.94 nM. 37b3 induced DNA damage and led to tumor cell cycle arrest and apoptosis. We employed 37b3 as a payload to conjugate with trastuzumab to obtain the antibody-drug conjugate (ADC) T-PBA. T-PBA maintained its mode of target and internalization ability of trastuzumab. We demonstrated that T-PBA could be degraded through the lysosomal pathway to release the payload 37b3 after internalization. T-PBA showed a powerful killing effect on Her2-positive cancer cells in vitro. Furthermore, T-PBA significantly inhibited tumor growth in gastric and ovarian cancer xenograft mouse models without overt toxicity. Collectively, these studies suggest that T-PBA represents a promising new ADC that deserves further investigation.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies and challenges for the next generation of antibody–drug conjugates

          Antibody–drug conjugate (ADCs), which aim to target highly cytotoxic drugs specifically to cancer cells, are one of the fastest growing classes of anticancer therapeutics, with more than 50 such agents currently in clinical trials. This Review discusses lessons learned and emerging strategies in the development of ADCs, including aspects such as target selection, the development of warheads, the optimization of linkers and new conjugation chemistries, and provides an overview of agents that are currently in clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antibodies to watch in 2020

            ABSTRACT This 2020 installment of the annual ‘Antibodies to Watch’ series documents the antibody therapeutics approved in 2019 and in regulatory review in the United States or European Union, as well as those in late-stage clinical studies, as of November 2019*. At this time, a total of 5 novel antibody therapeutics (romosozumab, risankizumab, polatuzumab vedotin, brolucizumab, and crizanlizumab) had been granted a first approval in either the US or EU, and marketing applications for 13 novel antibody therapeutics (eptinezumab, teprotumumab, enfortumab vedotin, isatuximab, [fam-]trastuzumab deruxtecan, inebilizumab, leronlimab, sacituzumab govitecan, satralizumab, narsoplimab, tafasitamab, REGNEB3 and naxituximab) were undergoing review in these regions, which represent the major markets for antibody therapeutics. Also as of November 2019, 79 novel antibodies were undergoing evaluation in late-stage clinical studies. Of the 79 antibodies, 39 were undergoing evaluation in late-stage studies for non-cancer indications, with 2 of these (ublituximab, pamrevlumab) also in late-stage studies for cancer indications. Companies developing 7 (tanezumab, aducanumab, evinacumab, etrolizumab, sutimlimab, anifrolumab, and teplizumab) of the 39 drugs have indicated that they may submit a marketing application in either the US or EU in 2020. Of the 79 antibodies in late-stage studies, 40 were undergoing evaluation as treatments for cancer, and potentially 9 of these (belantamab mafodotin, oportuzumab monatox, margetuximab, dostarlimab, spartalizumab, 131I-omburtamab, loncastuximab tesirine, balstilimab, and zalifrelimab) may enter regulatory review in late 2019 or in 2020. Overall, the biopharmaceutical industry’s clinical pipeline of antibody therapeutics is robust, and should provide a continuous supply of innovative products for patients in the future. *Note on key updates through December 18, 2019: 1) the US Food and Drug Administration granted accelerated approval to enfortumab vedotin-ejfv (Padcev) on December 18, 2019, bringing the total number of novel antibody therapeutics granted a first approval in either the US or EU during 2019 to 6; 2) the European Commission approved romosozumab on December 9, 2019; 3) the European Medicines Agency issued a positive opinion for brolucizumab; 4) Sesen Bio initiated a rolling biologics license application (BLA) on December 6, 2019; 5) GlaxoSmithKline submitted a BLA for belantamab mafodotin; and 6) the status of the Phase 3 study (NCT04128696) of GSK3359609, a humanized IgG4 anti-ICOS antibody, in patients with head and neck squamous cell carcinoma was updated to recruiting from not yet recruiting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139.

              Histone H2AX is a ubiquitous member of the H2A histone family that differs from the other H2A histones by the presence of an evolutionarily conserved C-terminal motif, -KKATQASQEY. The serine residue in this motif becomes rapidly phosphorylated in cells and animals when DNA double-stranded breaks are introduced into their chromatin by various physical and chemical means. In the present communication we show that this phosphorylated form of H2AX, referred to as gamma-H2AX, appears during apoptosis concurrently with the initial appearance of high molecular weight DNA fragments. gamma-H2AX forms before the appearance of internucleosomal DNA fragments and the externalization of phosphatidylserine to the outer membrane leaflet. gamma-H2AX formation is inhibited by N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and the inhibitor of caspase-activated DNase, and it is induced when DNase I and restriction enzymes are introduced into cells, suggesting that any apoptotic endonuclease is sufficient to induce gamma-H2AX formation. These results indicate that gamma-H2AX formation is an early chromatin modification following initiation of DNA fragmentation during apoptosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Medicinal Chemistry
                J. Med. Chem.
                American Chemical Society (ACS)
                0022-2623
                1520-4804
                September 08 2022
                August 19 2022
                September 08 2022
                : 65
                : 17
                : 11679-11702
                Affiliations
                [1 ]State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
                [2 ]Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
                [3 ]Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
                Article
                10.1021/acs.jmedchem.2c00471
                35982539
                7b7f1f03-57ec-41e5-9cd7-bd924dcdf9fc
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article