3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Technological advancements in the analysis of human motion and posture management through digital devices

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis.

          Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. Multiple factors are involved in the pathogenesis of OA, including mechanical influences, the effects of aging on cartilage matrix composition and structure, and genetic factors. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases, growth factors, cytokines, and other inflammatory mediators by chondrocytes, research has focused on the chondrocyte as the cellular mediator of OA pathogenesis. The other cells and tissues of the joint, including the synovium and subchondral bone, also contribute to pathogenesis. The adult articular chondrocyte, which normally maintains the cartilage with a low turnover of matrix constituents, has limited capacity to regenerate the original cartilage matrix architecture. It may attempt to recapitulate phenotypes of early stages of cartilage development, but the precise zonal variations of the original cartilage cannot be replicated. Current pharmacological interventions that address chronic pain are insufficient, and no proven structure-modifying therapy is available. Cartilage tissue engineering with or without gene therapy is the subject of intense investigation. There are multiple animal models of OA, but there is no single model that faithfully replicates the human disease. This review will focus on questions currently under study that may lead to better understanding of mechanisms of OA pathogenesis and elucidation of effective strategies for therapy, with emphasis on mechanisms that affect the function of chondrocytes and interactions with surrounding tissues. 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The reliability of three-dimensional kinematic gait measurements: a systematic review.

            Three-dimensional kinematic measures of gait are routinely used in clinical gait analysis and provide a key outcome measure for gait research and clinical practice. This systematic review identifies and evaluates current evidence for the inter-session and inter-assessor reliability of three-dimensional kinematic gait analysis (3DGA) data. A targeted search strategy identified reports that fulfilled the search criteria. The quality of full-text reports were tabulated and evaluated for quality using a customised critical appraisal tool. Fifteen full manuscripts and eight abstracts were included. Studies addressed both within-assessor and between-assessor reliability, with most examining healthy adults. Four full-text reports evaluated reliability in people with gait pathologies. The highest reliability indices occurred in the hip and knee in the sagittal plane, with lowest errors in pelvic rotation and obliquity and hip abduction. Lowest reliability and highest error frequently occurred in the hip and knee transverse plane. Methodological quality varied, with key limitations in sample descriptions and strategies for statistical analysis. Reported reliability indices and error magnitudes varied across gait variables and studies. Most studies providing estimates of data error reported values (S.D. or S.E.) of less than 5 degrees , with the exception of hip and knee rotation. This review provides evidence that clinically acceptable errors are possible in gait analysis. Variability between studies, however, suggests that they are not always achieved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A review of wearable sensors and systems with application in rehabilitation

              The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Orthop
                WJO
                World Journal of Orthopedics
                Baishideng Publishing Group Inc
                2218-5836
                18 July 2021
                18 July 2021
                : 12
                : 7
                : 467-484
                Affiliations
                Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
                Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
                Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
                Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
                Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
                Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
                Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
                Research Center on Motor Activities, University of Catania, Catania 95123, Italy
                Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, United States. g.musumeci@ 123456unict.it
                Author notes

                Author contributions: Roggio F manuscript writing and preparation, figure preparation; Ravalli S and Maugeri G contributed to the manuscript writing; Bianco A and Palma A provided inputs into the manuscript writing; Di Rosa M suggested form advice; Musumeci G designed the aim of the review and supervised the manuscript writing.

                Supported by University Research Project Grant, No. PIACERI Found – NATURE-OA - 2020-2022.

                Corresponding author: Giuseppe Musumeci, PhD, Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, Catania 95125, Italy. g.musumeci@ 123456unict.it

                Article
                jWJO.v12.i7.pg467
                10.5312/wjo.v12.i7.467
                8316840
                34354935
                7b3d6e2c-3e83-4e57-8bb6-5b65f85f5646
                ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

                History
                : 15 February 2021
                : 15 April 2021
                : 12 July 2021
                Categories
                Review

                motion capture,gait analysis,inertial measurement unit,wearable devices,rasterstereography,posture

                Comments

                Comment on this article