7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think

      , , , , , , , ,
      Medicina
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronary microvascular dysfunction (CMD) is a clinical entity linked with various risk factors that significantly affect cardiac morbidity and mortality. Hypertension, one of the most important, causes both functional and structural alterations in the microvasculature, promoting the occurrence and progression of microvascular angina. Endothelial dysfunction and capillary rarefaction play the most significant role in the development of CMD among patients with hypertension. CMD is also related to several hypertension-induced morphological and functional changes in the myocardium in the subclinical and early clinical stages, including left ventricular hypertrophy, interstitial myocardial fibrosis, and diastolic dysfunction. This indicates the fact that CMD, especially if associated with hypertension, is a subclinical marker of end-organ damage and heart failure, particularly that with preserved ejection fraction. This is why it is important to search for microvascular angina in every patient with hypertension and chest pain not associated with obstructive coronary artery disease. Several highly sensitive and specific non-invasive and invasive diagnostic modalities have been developed to evaluate the presence and severity of CMD and also to investigate and guide the treatment of additional complications that can affect further prognosis. This comprehensive review provides insight into the main pathophysiological mechanisms of CMD in hypertensive patients, offering an integrated diagnostic approach as well as an overview of currently available therapeutical modalities.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.

          Over the past decade, myocardial structure, cardiomyocyte function, and intramyocardial signaling were shown to be specifically altered in heart failure with preserved ejection fraction (HFPEF). A new paradigm for HFPEF development is therefore proposed, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations. The new paradigm presumes the following sequence of events in HFPEF: 1) a high prevalence of comorbidities such as overweight/obesity, diabetes mellitus, chronic obstructive pulmonary disease, and salt-sensitive hypertension induce a systemic proinflammatory state; 2) a systemic proinflammatory state causes coronary microvascular endothelial inflammation; 3) coronary microvascular endothelial inflammation reduces nitric oxide bioavailability, cyclic guanosine monophosphate content, and protein kinase G (PKG) activity in adjacent cardiomyocytes; 4) low PKG activity favors hypertrophy development and increases resting tension because of hypophosphorylation of titin; and 5) both stiff cardiomyocytes and interstitial fibrosis contribute to high diastolic left ventricular (LV) stiffness and heart failure development. The new HFPEF paradigm shifts emphasis from LV afterload excess to coronary microvascular inflammation. This shift is supported by a favorable Laplace relationship in concentric LV hypertrophy and by all cardiac chambers showing similar remodeling and dysfunction. Myocardial remodeling in HFPEF differs from heart failure with reduced ejection fraction, in which remodeling is driven by loss of cardiomyocytes. The new HFPEF paradigm proposes comorbidities, plasma markers of inflammation, or vascular hyperemic responses to be included in diagnostic algorithms and aims at restoring myocardial PKG activity. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Association between insulin resistance and the development of cardiovascular disease

            For many years, cardiovascular disease (CVD) has been the leading cause of death around the world. Often associated with CVD are comorbidities such as obesity, abnormal lipid profiles and insulin resistance. Insulin is a key hormone that functions as a regulator of cellular metabolism in many tissues in the human body. Insulin resistance is defined as a decrease in tissue response to insulin stimulation thus insulin resistance is characterized by defects in uptake and oxidation of glucose, a decrease in glycogen synthesis, and, to a lesser extent, the ability to suppress lipid oxidation. Literature widely suggests that free fatty acids are the predominant substrate used in the adult myocardium for ATP production, however, the cardiac metabolic network is highly flexible and can use other substrates, such as glucose, lactate or amino acids. During insulin resistance, several metabolic alterations induce the development of cardiovascular disease. For instance, insulin resistance can induce an imbalance in glucose metabolism that generates chronic hyperglycemia, which in turn triggers oxidative stress and causes an inflammatory response that leads to cell damage. Insulin resistance can also alter systemic lipid metabolism which then leads to the development of dyslipidemia and the well-known lipid triad: (1) high levels of plasma triglycerides, (2) low levels of high-density lipoprotein, and (3) the appearance of small dense low-density lipoproteins. This triad, along with endothelial dysfunction, which can also be induced by aberrant insulin signaling, contribute to atherosclerotic plaque formation. Regarding the systemic consequences associated with insulin resistance and the metabolic cardiac alterations, it can be concluded that insulin resistance in the myocardium generates damage by at least three different mechanisms: (1) signal transduction alteration, (2) impaired regulation of substrate metabolism, and (3) altered delivery of substrates to the myocardium. The aim of this review is to discuss the mechanisms associated with insulin resistance and the development of CVD. New therapies focused on decreasing insulin resistance may contribute to a decrease in both CVD and atherosclerotic plaque generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis.

              We sought to conduct a systematic review and meta-analysis of the cardiovascular risk associated with the metabolic syndrome as defined by the 2001 National Cholesterol Education Program (NCEP) and 2004 revised National Cholesterol Education Program (rNCEP) definitions. Numerous studies have investigated the cardiovascular risk associated with the NCEP and rNCEP definitions of the metabolic syndrome. There is debate regarding the prognostic significance of the metabolic syndrome for cardiovascular outcomes. We searched the Cochrane Library, EMBASE, and Medline databases through June 2009 for prospective observational studies investigating the cardiovascular effects of the metabolic syndrome. Two reviewers extracted data, which were aggregated using random-effects models. We identified 87 studies, which included 951,083 patients (NCEP: 63 studies, 497,651 patients; rNCEP: 33 studies, 453,432 patients). There was little variation between the cardiovascular risk associated with NCEP and rNCEP definitions. When both definitions were pooled, the metabolic syndrome was associated with an increased risk of cardiovascular disease (CVD) (relative risk [RR]: 2.35; 95% confidence interval [CI]: 2.02 to 2.73), CVD mortality (RR: 2.40; 95% CI: 1.87 to 3.08), all-cause mortality (RR: 1.58; 95% CI: 1.39 to 1.78), myocardial infarction (RR: 1.99; 95% CI: 1.61 to 2.46), and stroke (RR: 2.27; 95% CI: 1.80 to 2.85). Patients with the metabolic syndrome, but without diabetes, maintained a high cardiovascular risk. The metabolic syndrome is associated with a 2-fold increase in cardiovascular outcomes and a 1.5-fold increase in all-cause mortality. Studies are needed to investigate whether or not the prognostic significance of the metabolic syndrome exceeds the risk associated with the sum of its individual components. Furthermore, studies are needed to elucidate the mechanisms by which the metabolic syndrome increases cardiovascular risk. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MBSEFA
                Medicina
                Medicina
                MDPI AG
                1648-9144
                December 2023
                December 11 2023
                : 59
                : 12
                : 2149
                Article
                10.3390/medicina59122149
                7b36cba4-e206-4fa9-a250-5557c941d434
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article