15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Arsenic and cadmium accumulation in rice and mitigation strategies

      ,
      Plant and Soil
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.

          Among the heavy metal-binding ligands in plant cells the phytochelatins (PCs) and metallothioneins (MTs) are the best characterized. PCs and MTs are different classes of cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized peptides, whereas MTs are gene-encoded polypeptides. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species while the completion of the Arabidopsis genome sequence has allowed the identification of the entire suite of MT genes in a higher plant. Recent advances in understanding the regulation of PC biosynthesis and MT gene expression and the possible roles of PCs and MTs in heavy metal detoxification and homeostasis are reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soil contamination in China: current status and mitigation strategies.

            China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice.

              Paddy rice (Oryza sativa) is able to accumulate high concentrations of Mn without showing toxicity; however, the molecular mechanisms underlying Mn uptake are unknown. Here, we report that a member of the Nramp (for the Natural Resistance-Associated Macrophage Protein) family, Nramp5, is involved in Mn uptake and subsequently the accumulation of high concentrations of Mn in rice. Nramp5 was constitutively expressed in the roots and encodes a plasma membrane-localized protein. Nramp5 was polarly localized at the distal side of both exodermis and endodermis cells. Knockout of Nramp5 resulted in a significant reduction in growth and grain yield, especially when grown at low Mn concentrations. This growth reduction could be partially rescued by supplying high concentrations of Mn but not by the addition of Fe. Mineral analysis showed that the concentration of Mn and Cd in both the roots and shoots was lower in the knockout line than in wild-type rice. A short-term uptake experiment revealed that the knockout line lost the ability to take up Mn and Cd. Taken together, Nramp5 is a major transporter of Mn and Cd and is responsible for the transport of Mn and Cd from the external solution to root cells.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Plant and Soil
                Plant Soil
                Springer Science and Business Media LLC
                0032-079X
                1573-5036
                January 2020
                November 27 2019
                January 2020
                : 446
                : 1-2
                : 1-21
                Article
                10.1007/s11104-019-04374-6
                7b3230aa-e6d3-4e9b-b5ca-7741e177a76f
                © 2020

                Free to read

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article