Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Notch-mediated cell–cell communication regulates numerous developmental processes and cell fate decisions. Through a mosaic genetic screen in Drosophila melanogaster, we identified a role in Notch signaling for a conserved thiol oxidase, endoplasmic reticulum (ER) oxidoreductin 1–like (Ero1L). Although Ero1L is reported to play a widespread role in protein folding in yeast, in flies Ero1L mutant clones show specific defects in lateral inhibition and inductive signaling, two characteristic processes regulated by Notch signaling. Ero1L mutant cells accumulate high levels of Notch protein in the ER and induce the unfolded protein response, suggesting that Notch is misfolded and fails to be exported from the ER. Biochemical assays demonstrate that Ero1L is required for formation of disulfide bonds of three Lin12-Notch repeats (LNRs) present in the extracellular domain of Notch. These LNRs are unique to the Notch family of proteins. Therefore, we have uncovered an unexpected requirement for Ero1L in the maturation of the Notch receptor.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch signaling: control of cell communication and cell fate.

            Eric Lai (2004)
            Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade present in all animal species studied to date. Notch signaling is used widely to determine cell fates and to regulate pattern formation; its dysfunction results in a tremendous variety of developmental defects and adult pathologies. This primer describes the mechanism of Notch signal transduction and how it is used to control the formation of biological patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development.

              T. Lee, L. Luo (2001)
              We have modified an FLP/FRT-based genetic mosaic system to label either neurons derived from a common progenitor or isolated single neurons, in the Drosophila CNS. These uniquely labeled neurons can also be made homozygous for a mutation of interest within an otherwise phenotypically wild-type brain. Using this new mosaic system, not only can normal brain development be described with unprecedented single cell resolution, but also the underlying molecular mechanisms can be investigated by identifying genes that are required for these developmental processes.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                22 September 2008
                : 182
                : 6
                : 1113-1125
                Affiliations
                [1 ]Program in Developmental Biology, [2 ]Department of Molecular and Human Genetics, [3 ]Howard Hughes Medical Institute, and [4 ]Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
                [5 ]Department of Cell Biology, New York University School of Medicine, New York, NY 10016
                [6 ]Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
                Author notes

                Correspondence to Hugo J. Bellen: hbellen@ 123456bcm.tmc.edu

                Article
                200805001
                10.1083/jcb.200805001
                2542473
                18809725
                7b1d71f2-1266-4483-9d04-3d72259a19bc
                © 2008 Tien et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 1 May 2008
                : 20 August 2008
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content268

                Cited by22

                Most referenced authors1,855