9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune-based therapies in the management of multiple myeloma

      review-article
      1 , 2 , 1 , 1 , 2 ,
      Blood Cancer Journal
      Nature Publishing Group UK
      Myeloma, Therapeutics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple myeloma (MM) is a clonal plasma cell malignancy affecting a predominantly elderly population. The continued development of newer therapies with novel mechanisms of action has reshaped the treatment paradigm of this disorder in the last two decades, leading to a significantly improved prognosis. This has in turn resulted in an increasing number of patients in need of therapy for relapsed/refractory disease. Immune-based therapies, including monoclonal antibodies, immune checkpoint inhibitors, and most promisingly, adoptive cellular therapies represent important therapeutic strategies in these patients due to their non-cross resistant mechanisms of actions with the usual frontline therapies comprising of immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). The anti-CD38 antibodies daratumumab and more recently isatuximab, with their excellent efficacy and safety profile along with its synergy in combination with IMiDs and PIs, are being increasingly incorporated in the frontline setting. Chimeric antigen receptor–T cell (CART) therapies and bi-specific T-cell engager (BiTE) represent exciting new options that have demonstrated efficacy in heavily pretreated and refractory MM. In this review, we discuss the rationale for use of immune-based therapies in MM and summarize the currently available literature for common antibodies and CAR-T therapies that are utilized in MM.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory T cells: how do they suppress immune responses?

            Regulatory T cells (Tregs), either natural or induced, suppress a variety of physiological and pathological immune responses. One of the key issues for understanding Treg function is to determine how they suppress other lymphocytes at the molecular level in vivo and in vitro. Here we propose that there may be a key suppressive mechanism that is shared by every forkhead box p3 (Foxp3)(+) Treg in vivo and in vitro in mice and humans. When this central mechanism is abrogated, it causes a breach in self-tolerance and immune homeostasis. Other suppressive mechanisms may synergistically operate with this common mechanism depending on the environment and the type of an immune response. Further, Treg-mediated suppression is a multi-step process and impairment or augmentation of each step can alter the ultimate effectiveness of Treg-mediated suppression. These findings will help to design effective ways for controlling immune responses by targeting Treg suppressive functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway.

              Multiple myeloma (MM) cells inhibit certain T-cell functions. We examined the expression of B7-H1 (PD-L1), a B7-related protein that inhibits T-cell responses, in CD138-purified plasma cells isolated from MM patients, monoclonal gammopathy of undetermined significance patients, and healthy donors. We observed that B7-H1 was expressed in most MM plasma cells, but not cells isolated from monoclonal gammopathy of undetermined significance or healthy donors. This expression was increased or induced by IFN-gamma and Toll-like receptor (TLR) ligands in isolated MM plasma cells. Blocking the MEK/ERK pathway inhibited IFN-gamma-mediated and TLR-mediated expression of B7-H1. Inhibition of the MyD88 and TRAF6 adaptor proteins of the TLR pathway blocked not only B7-H1 expression induced by TLR ligands but also that mediated by IFN-gamma. IFN-gamma-induced STAT1 activation, via MEK/ERK and MyD88/TRAF6, and inhibition of STAT1 reduced B7-H1 expression. MM plasma cells stimulated with IFN-gamma or TLR ligands inhibited cytotoxic T lymphocytes (CTLs) generation and this immunosuppressive effect was inhibited by preincubation with an anti-B7-H1 antibody, the UO126 MEK inhibitor, or by transfection of a dominant-negative mutant of MyD88. Thus, B7-H1 expression by MM cells represents a possible immune escape mechanism that could be targeted therapeutically through inhibition of MyD88/TRAF6 and MEK/ERK/STAT1.
                Bookmark

                Author and article information

                Contributors
                Kumar.Shaji@mayo.edu
                Journal
                Blood Cancer J
                Blood Cancer J
                Blood Cancer Journal
                Nature Publishing Group UK (London )
                2044-5385
                22 August 2020
                22 August 2020
                August 2020
                : 10
                : 8
                : 84
                Affiliations
                [1 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Division of Hematology, , Mayo Clinic, ; Rochester, MN USA
                [2 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Department of Internal Medicine, , Mayo Clinic, ; Rochester, MN USA
                Author information
                http://orcid.org/0000-0001-5074-8453
                http://orcid.org/0000-0001-5392-9284
                Article
                350
                10.1038/s41408-020-00350-x
                7443188
                32829378
                7ae6ab74-806d-4679-92ee-3f71596259f2
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 June 2020
                : 24 July 2020
                : 27 July 2020
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                myeloma,therapeutics
                Oncology & Radiotherapy
                myeloma, therapeutics

                Comments

                Comment on this article