17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Telomere length and genetic variant associations with interstitial lung disease progression and survival

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leukocyte telomere length (LTL), MUC5B rs35705950 and TOLLIP rs5743890 have been associated with idiopathic pulmonary fibrosis (IPF).

          In this observational cohort study, we assessed the associations between these genomic markers and outcomes of survival and rate of disease progression in patients with interstitial pneumonia with autoimmune features (IPAF, n=250) and connective tissue disease-associated interstitial lung disease (CTD-ILD, n=248). IPF (n=499) was used as a comparator.

          The LTL of IPAF and CTD-ILD patients (mean age-adjusted log-transformed T/S of −0.05±0.29 and −0.04±0.25, respectively) is longer than that of IPF patients (−0.17±0.32). For IPAF patients, LTL <10th percentile is associated with faster lung function decline compared to LTL ≥10th percentile (−6.43% per year versus −0.86% per year; p<0.0001) and worse transplant-free survival (hazard ratio 2.97, 95% CI 1.70–5.20; p=0.00014). The MUC5B rs35705950 minor allele frequency (MAF) is greater for IPAF patients (23.2, 95% CI 18.8–28.2; p<0.0001) than controls and is associated with worse transplant-free IPAF survival (hazard ratio 1.92, 95% CI 1.18–3.13; p=0.0091). Rheumatoid arthritis (RA)-associated ILD (RA-ILD) has a shorter LTL than non-RA CTD-ILD (−0.14±0.27 versus −0.01±0.23; p=0.00055) and higher MUC5B MAF (34.6, 95% CI 24.4–46.3 versus 14.1, 95% CI 9.8–20.0; p=0.00025). Neither LTL nor MUC5B are associated with transplant-free CTD-ILD survival.

          LTL and MUC5B MAF have different associations with lung function progression and survival for IPAF and CTD-ILD.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A common MUC5B promoter polymorphism and pulmonary fibrosis.

          The mutations that have been implicated in pulmonary fibrosis account for only a small proportion of the population risk. Using a genomewide linkage scan, we detected linkage between idiopathic interstitial pneumonia and a 3.4-Mb region of chromosome 11p15 in 82 families. We then evaluated genetic variation in this region in gel-forming mucin genes expressed in the lung among 83 subjects with familial interstitial pneumonia, 492 subjects with idiopathic pulmonary fibrosis, and 322 controls. MUC5B expression was assessed in lung tissue. Linkage and fine mapping were used to identify a region of interest on the p-terminus of chromosome 11 that included gel-forming mucin genes. The minor-allele of the single-nucleotide polymorphism (SNP) rs35705950, located 3 kb upstream of the MUC5B transcription start site, was present at a frequency of 34% among subjects with familial interstitial pneumonia, 38% among subjects with idiopathic pulmonary fibrosis, and 9% among controls (allelic association with familial interstitial pneumonia, P=1.2×10(-15); allelic association with idiopathic pulmonary fibrosis, P=2.5×10(-37)). The odds ratios for disease among subjects who were heterozygous and those who were homozygous for the minor allele of this SNP were 6.8 (95% confidence interval [CI], 3.9 to 12.0) and 20.8 (95% CI, 3.8 to 113.7), respectively, for familial interstitial pneumonia and 9.0 (95% CI, 6.2 to 13.1) and 21.8 (95% CI, 5.1 to 93.5), respectively, for idiopathic pulmonary fibrosis. MUC5B expression in the lung was 14.1 times as high in subjects who had idiopathic pulmonary fibrosis as in those who did not (P<0.001). The variant allele of rs35705950 was associated with up-regulation in MUC5B expression in the lung in unaffected subjects (expression was 37.4 times as high as in unaffected subjects homozygous for the wild-type allele, P<0.001). MUC5B protein was expressed in lesions of idiopathic pulmonary fibrosis. A common polymorphism in the promoter of MUC5B is associated with familial interstitial pneumonia and idiopathic pulmonary fibrosis. Our findings suggest that dysregulated MUC5B expression in the lung may be involved in the pathogenesis of pulmonary fibrosis. (Funded by the National Heart, Lung, and Blood Institute and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomerase mutations in families with idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is progressive and often fatal; causes of familial clustering of the disease are unknown. Germ-line mutations in the genes hTERT and hTR, encoding telomerase reverse transcriptase and telomerase RNA, respectively, cause autosomal dominant dyskeratosis congenita, a rare hereditary disorder associated with premature death from aplastic anemia and pulmonary fibrosis. To test the hypothesis that familial idiopathic pulmonary fibrosis may be caused by short telomeres, we screened 73 probands from the Vanderbilt Familial Pulmonary Fibrosis Registry for mutations in hTERT and hTR. Six probands (8%) had heterozygous mutations in hTERT or hTR; mutant telomerase resulted in short telomeres. Asymptomatic subjects with mutant telomerase also had short telomeres, suggesting that they may be at risk for the disease. We did not identify any of the classic features of dyskeratosis congenita in five of the six families. Mutations in the genes encoding telomerase components can appear as familial idiopathic pulmonary fibrosis. Our findings support the idea that pathways leading to telomere shortening are involved in the pathogenesis of this disease. Copyright 2007 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.

              Idiopathic pulmonary fibrosis (IPF) is a devastating disease that probably involves several genetic loci. Several rare genetic variants and one common single nucleotide polymorphism (SNP) of MUC5B have been associated with the disease. Our aim was to identify additional common variants associated with susceptibility and ultimately mortality in IPF. First, we did a three-stage genome-wide association study (GWAS): stage one was a discovery GWAS; and stages two and three were independent case-control studies. DNA samples from European-American patients with IPF meeting standard criteria were obtained from several US centres for each stage. Data for European-American control individuals for stage one were gathered from the database of genotypes and phenotypes; additional control individuals were recruited at the University of Pittsburgh to increase the number. For controls in stages two and three, we gathered data for additional sex-matched European-American control individuals who had been recruited in another study. DNA samples from patients and from control individuals were genotyped to identify SNPs associated with IPF. SNPs identified in stage one were carried forward to stage two, and those that achieved genome-wide significance (p<5 × 10(-8)) in a meta-analysis were carried forward to stage three. Three case series with follow-up data were selected from stages one and two of the GWAS using samples with follow-up data. Mortality analyses were done in these case series to assess the SNPs associated with IPF that had achieved genome-wide significance in the meta-analysis of stages one and two. Finally, we obtained gene-expression profiling data for lungs of patients with IPF from the Lung Genomics Research Consortium and analysed correlation with SNP genotypes. In stage one of the GWAS (542 patients with IPF, 542 control individuals matched one-by-one to cases by genetic ancestry estimates), we identified 20 loci. Six SNPs reached genome-wide significance in stage two (544 patients, 687 control individuals): three TOLLIP SNPs (rs111521887, rs5743894, rs5743890) and one MUC5B SNP (rs35705950) at 11p15.5; one MDGA2 SNP (rs7144383) at 14q21.3; and one SPPL2C SNP (rs17690703) at 17q21.31. Stage three (324 patients, 702 control individuals) confirmed the associations for all these SNPs, except for rs7144383. Linkage disequilibrium between the MUC5B SNP (rs35705950) and TOLLIP SNPs (rs111521887 [r(2)=0·07], rs5743894 [r(2)=0·16], and rs5743890 [r(2)=0·01]) was low. 683 patients from the GWAS were included in the mortality analysis. Individuals who developed IPF despite having the protective TOLLIP minor allele of rs5743890 carried an increased mortality risk (meta-analysis with fixed-effect model: hazard ratio 1·72 [95% CI 1·24-2·38]; p=0·0012). TOLLIP expression was decreased by 20% in individuals carrying the minor allele of rs5743890 (p=0·097), 40% in those with the minor allele of rs111521887 (p=3·0 × 10(-4)), and 50% in those with the minor allele of rs5743894 (p=2·93 × 10(-5)) compared with homozygous carriers of common alleles for these SNPs. Novel variants in TOLLIP and SPPL2C are associated with IPF susceptibility. One novel variant of TOLLIP, rs5743890, is also associated with mortality. These associations and the reduced expression of TOLLIP in patients with IPF who carry TOLLIP SNPs emphasise the importance of this gene in the disease. National Institutes of Health; National Heart, Lung, and Blood Institute; Pulmonary Fibrosis Foundation; Coalition for Pulmonary Fibrosis; and Instituto de Salud Carlos III. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                European Respiratory Journal
                Eur Respir J
                European Respiratory Society (ERS)
                0903-1936
                1399-3003
                April 11 2019
                April 2019
                April 2019
                January 11 2019
                : 53
                : 4
                : 1801641
                Article
                10.1183/13993003.01641-2018
                6612265
                30635297
                7ace7a1d-758e-4385-8fce-b5b4380d4e04
                © 2019

                https://www.ersjournals.com/user-licence

                History

                Comments

                Comment on this article