10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toward understanding the different function of two types of parenchyma cells in bamboo culms.

      Plant and Cell Physiology
      Cell Wall, metabolism, physiology, ultrastructure, Glucans, Immunohistochemistry, Lignin, Microscopy, Confocal, Microscopy, Electron, Plant Structures, cytology, Poaceae, Polysaccharides, Xylans, beta-Glucans

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bamboo, woody monocot, has two types of parenchyma cells in the ground tissues of its culm, in contrast to a single type of parenchyma cell in rice, maize and other major crop species. The distribution of cell wall components, including lignin, (1-->3), (1-->4)-beta-D-glucans (MGs), the highly-substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans (lbXs) in ground parenchyma tissue of Phyllostachys heterocycla var. pubescens culms was studied at various developmental stages using light microscopy (LM), UV-microscopy, transmission electron microscopy (TEM) and immunolabeling techniques. The short parenchyma cell walls were lignified in 2-month-old bamboo culms just as the long parenchyma cell walls were. The lignified regions were confined to the portions in contact with the long parenchyma cell walls, while the walls at the cell corner region never lignified, even in 7-year-old culms. Significant differences were also found in the hemicellulose distribution between the short and long parenchyma cell walls. In bamboo parenchyma tissue, MGs were localized in short parenchyma cell walls and few were found in long parenchyma cell walls in both young and 7-year-old culms. The distribution of hsGAXs was similar to that of MGs in young culms, but they only appeared in the cell corner region of short parenchyma cells in old culms. Low-branched xylans were distributed in the lignified, but not in unlignified parenchyma cell walls. Based on this evidence, the differences of function in both short and long parenchyma cells in a bamboo culm are discussed.

          Related collections

          Author and article information

          Comments

          Comment on this article