23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common form of dementia in elder people, characterised by a progressive decline in memory as a result of an impairment of cholinergic neurotransmission. To date acetylcholinesterase inhibitors (AChEIs) have become the most prescribed drugs for the symptomatic treatment of mild to moderate AD. However, the traditional “one molecule-one target” paradigm is not sufficient and appropriate to yield the desired therapeutic efficacy since multiple factors, such as amyloid-β (Aβ) deposits, neuroinflammation, oxidative stress, and decreased levels of acetylcholine (ACh) have been thought to play significant roles in the AD pathogenesis. New generation of multi-target drugs is earnestly demanded not only for ameliorating symptoms but also for modifying the disease. Herein, we delineated the catalytic and non-catalytic functions of AChE, and summarized the works of our group and others in research and development of novel AChEI-based multi-target-directed ligands (MTDLs), such as dual binding site AChEIs and multi-target AChEIs inhibiting Aβ aggregation, regulating Aβ procession, antagonizing platelet-activating factor (PAF) receptor, scavenging oxygen radical, chelating metal ions, inhibiting monoamine oxidase B (MAO-B), blocking N-methyl-D-aspartic acid (NMDA) receptor and others.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

          Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections.

            β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The history of the cholinergic hypothesis.

              The cholinergic hypothesis of cognitive impairment and Alzheimer's disease has been for decades a "polar star" for studies on dementia and neurodegenerative diseases. Aim of the present article is to briefly summarize its birth and its evolution throughout years and discoveries. Putting the cholinergic hypothesis in an historical perspective, allows to appreciate the enormous amount of experimental and clinical research that it has stimulated over years and the impressive extent of knowledge generated by this research. While some of the assumptions at the basis of its original formulation are disputable in the light of recent developments, the cholinergic hypothesis has, however, constituted an invaluable stimulus to better understand not only the anatomy and the biochemistry of the cholinergic systems of brain connections but also its developmental biology, its complex relationships with trophic factors, its role in cognitive functions. Thus, rather than being consigned to history, the cholinergic hypothesis will likely contribute to further understanding dementia and neurodegenerative diseases and will hopefully be integrated in novel therapies and treatments. Copyright © 2010. Published by Elsevier B.V.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                May 2016
                May 2016
                : 14
                : 4
                : 364-375
                Affiliations
                Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
                Author notes
                [* ]Address correspondence to these authors at the Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China; Tel/Fax: 86-21-64674721; E-mail: hongzhuan_chen@ 123456hotmail.co and Tel: 86-21-63846590 ext 778016; Fax: 86-21-64674721; E-mail: angela_wanghao@ 123456hotmail.com
                Article
                CN-14-364
                10.2174/1570159X14666160119094820
                4876592
                26786145
                7abeb2aa-0d2a-4b7e-ba0e-f34608e7915e
                © 2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 2 October 2015
                : 12 November 2015
                : 12 November 2015
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                acetylcholinesterase inhibitor,alzheimer's disease,multi-target-directed ligand.

                Comments

                Comment on this article