23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors.

          IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation.

          IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells.

          Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular genetics of prostate cancer: new prospects for old challenges.

          Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Since early studies on the role of the androgen receptor that led to the advent of androgen deprivation therapy in the 1940s, there has long been intensive interest in the basic mechanisms underlying prostate cancer initiation and progression, as well as the potential to target these processes for therapeutic intervention. Here, we present an overview of major themes in prostate cancer research, focusing on current knowledge of principal events in cancer initiation and progression. We discuss recent advances, including new insights into the mechanisms of castration resistance, identification of stem cells and tumor-initiating cells, and development of mouse models for preclinical evaluation of novel therapuetics. Overall, we highlight the tremendous research progress made in recent years, and underscore the challenges that lie ahead.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recurrent gene fusions in prostate cancer.

            The discovery of recurrent gene fusions in a majority of prostate cancers has important clinical and biological implications in the study of common epithelial tumours. Gene fusion and chromosomal rearrangements were previously thought to be primarily the oncogenic mechanism of haematological malignancies and sarcomas. The prostate cancer gene fusions that have been identified thus far are characterized by 5' genomic regulatory elements, most commonly controlled by androgen, fused to members of the Ets family of transcription factors, leading to the overexpression of oncogenic transcription factors. Ets gene fusions probably define a distinct class of prostate cancer, and this might have a bearing on diagnosis, prognosis and rational therapeutic targeting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the TMPRSS2-ERG gene fusion in prostate cancer.

              TMPRSS2-ERG gene fusions are the predominant molecular subtype of prostate cancer. Here, we explored the role of TMPRSS2-ERG gene fusion product using in vitro and in vivo model systems. Transgenic mice expressing the ERG gene fusion product under androgen-regulation develop mouse prostatic intraepithelial neoplasia (PIN), a precursor lesion of prostate cancer. Introduction of the ERG gene fusion product into primary or immortalized benign prostate epithelial cells induced an invasion-associated transcriptional program but did not increase cellular proliferation or anchorage-independent growth. These results suggest that TMPRSS2-ERG may not be sufficient for transformation in the absence of secondary molecular lesions. Transcriptional profiling of ERG knockdown in the TMPPRSS2-ERG-positive prostate cancer cell line VCaP revealed decreased expression of genes over-expressed in prostate cancer versus PIN and genes overexpressed in ETS-positive versus -negative prostate cancers in addition to inhibiting invasion. ERG knockdown in VCaP cells also induced a transcriptional program consistent with prostate differentiation. Importantly, VCaP cells and benign prostate cells overexpressing ERG directly engage components of the plasminogen activation pathway to mediate cellular invasion, potentially representing a downstream ETS target susceptible to therapeutic intervention. Our results support previous work suggesting that TMPRSS2-ERG fusions mediate invasion, consistent with the defining histologic distinction between PIN and prostate cancer.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                30 June 2015
                27 March 2015
                : 6
                : 18
                : 16611-16622
                Affiliations
                1 CRS Development of Biomolecular Therapies, Experimental Oncology Lab, Rizzoli Orthopaedic Institute, Bologna, Italy
                2 Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
                3 Department of Pathology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
                4 Department of Urology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
                5 Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
                Author notes
                Correspondence to: Katia Scotlandi, katia.scotlandi@ 123456ior.it
                [*]

                These authors have shared senior authorship

                Article
                10.18632/oncotarget.3425
                4599293
                25906745
                7a8af4fe-62b3-4c5c-9128-917c09248177
                Copyright: © 2015 Mancarella et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 November 2014
                : 23 February 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                insulin-like growth factor receptor 1,prostate cancer,ets fusion genes,anti-igf-1r agents

                Comments

                Comment on this article