21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epilepsy in the mTORopathies: opportunities for precision medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.

          Abstract

          Moloney et al. outline the spectrum of epilepsies caused by pathogenic variation in genes encoding for regulators of the mechanistic target of rapamycin signalling pathway. Epileptogenesis in the mTORopathies results from excessive activation of the pathway, presenting a therapeutic target for seizures and other manifestations in these disorders.

          Graphical Abstract

          Graphical Abstract

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          mTOR signaling in growth control and disease.

          The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutation and cancer: statistical study of retinoblastoma.

            A Knudson (1971)
            Based upon observations on 48 cases of retinoblastoma and published reports, the hypothesis is developed that retinoblastoma is a cancer caused by two mutational events. In the dominantly inherited form, one mutation is inherited via the germinal cells and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells. The second mutation produces an average of three retinoblastomas per individual inheriting the first mutation. Using Poisson statistics, one can calculate that this number (three) can explain the occasional gene carrier who gets no tumor, those who develop only unilateral tumors, and those who develop bilateral tumors, as well as explaining instances of multiple tumors in one eye. This value for the mean number of tumors occurring in genetic carriers may be used to estimate the mutation rate for each mutation. The germinal and somatic rates for the first, and the somatic rate for the second, mutation, are approximately equal. The germinal mutation may arise in some instances from a delayed mutation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.

              Angiomyolipomas in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis are associated with mutations in tuberous sclerosis genes resulting in constitutive activation of the mammalian target of rapamycin (mTOR). The drug sirolimus suppresses mTOR signaling. We conducted a 24-month, nonrandomized, open-label trial to determine whether sirolimus reduces the angiomyolipoma volume in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis. Sirolimus was administered for the first 12 months only. Serial magnetic resonance imaging of angiomyolipomas and brain lesions, computed tomography of lung cysts, and pulmonary-function tests were performed. Of the 25 patients enrolled, 20 completed the 12-month evaluation, and 18 completed the 24-month evaluation. The mean (+/-SD) angiomyolipoma volume at 12 months was 53.2+/-26.6% of the baseline value (P<0.001) and at 24 months was 85.9+/-28.5% of the baseline value (P=0.005). At 24 months, five patients had a persistent reduction in the angiomyolipoma volume of 30% or more. During the period of sirolimus therapy, among patients with lymphangioleiomyomatosis, the mean forced expiratory volume in 1 second (FEV1) increased by 118+/-330 ml (P=0.06), the forced vital capacity (FVC) increased by 390+/-570 ml (P<0.001), and the residual volume decreased by 439+/-493 ml (P=0.02), as compared with baseline values. One year after sirolimus was discontinued, the FEV1 was 62+/-411 ml above the baseline value, the FVC was 346+/-712 ml above the baseline value, and the residual volume was 333+/-570 ml below the baseline value; cerebral lesions were unchanged. Five patients had six serious adverse events while receiving sirolimus, including diarrhea, pyelonephritis, stomatitis, and respiratory infections. Angiomyolipomas regressed somewhat during sirolimus therapy but tended to increase in volume after the therapy was stopped. Some patients with lymphangioleiomyomatosis had improvement in spirometric measurements and gas trapping that persisted after treatment. Suppression of mTOR signaling might constitute an ameliorative treatment in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis. (ClinicalTrials.gov number, NCT00457808.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Journal
                Brain Commun
                Brain Commun
                braincomms
                Brain Communications
                Oxford University Press
                2632-1297
                2021
                25 September 2021
                25 September 2021
                : 3
                : 4
                : fcab222
                Affiliations
                FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                Blackrock Clinic , Dublin, A94 E4X7, Ireland
                Department of Neurology, Beaumont Hospital , Dublin, D09 V2N0, Ireland
                School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                Department of Neurology, Beaumont Hospital , Dublin, D09 V2N0, Ireland
                School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
                Author notes
                Correspondence to: Norman Delanty Department of Neurology, Beaumont Hospital, Dublin D09 V2N0, Ireland E-mail: normandelanty@ 123456beaumont.ie
                Article
                fcab222
                10.1093/braincomms/fcab222
                8495134
                34632383
                7a7899fd-7f09-4f66-adf1-2a0c36033675
                © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 July 2021
                : 23 August 2021
                : 30 August 2021
                Page count
                Pages: 21
                Funding
                Funded by: Science Foundation Ireland under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. P.B.M. receives funding from the Royal College of Surgeons in Ireland—Blackrock Clinic StAR MD programme, 2020;
                Categories
                Review Article
                AcademicSubjects/MED00310
                AcademicSubjects/SCI01870

                the mtoropathies,tuberous sclerosis complex,gator1-related epilepsies,focal cortical dysplasia type ii,everolimus

                Comments

                Comment on this article