7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduced gut-microbial diversity (“gut dysbiosis”) has been associated with an anhedonic/amotivational syndrome (“sickness behavior”) that manifests across severe mental disorders and represent the key clinical feature of chronic fatigue. In this systematic review and meta-analysis, we investigated differences in proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue vs. controls and the association of these biomarkers with sickness behavior across diagnostic categories. Following PRISMA guidelines, we searched from inception to April 2020 for all the studies investigating proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue. Data were independently extracted by multiple observers, and a random-mixed model was used for the analysis. Heterogeneity was assessed with the I 2 index. Thirty-three studies were included in the systematic review; nineteen in the meta-analysis ( N = 2758 patients and N = 1847 healthy controls). When compared to controls, patients showed increased levels of zonulin (four studies reporting data on bipolar disorder and depression, SMD = 0.97; 95% Cl = 0.10–1.85; P = 0.03, I 2 = 86.61%), lipopolysaccharide (two studies reporting data on chronic fatigue and depression, SMD = 0.77; 95% Cl = 0.42–1.12; P < 0.01; I 2 = 0%), antibodies against endotoxin (seven studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.99; 95% CI = 0.27–1.70; P < 0.01, I 2 = 97.14%), sCD14 (six studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.54; 95% Cl 0.16–0.81; P < 0.01, I 2 = 90.68%), LBP (LBP, two studies reporting data on chronic fatigue and depression, SMD = 0.87; 95% Cl = 0.25–1.48; P < 0.01 ; I 2 = 56.80%), alpha-1-antitripsin (six studies reporting data on bipolar disorder, depression, and schizophrenia, SMD = 1.23; 95% Cl = 0.57–1.88; P < 0.01, I 2: 89.25%). Elevated levels of gut dysbiosis markers positively correlated with severity of sickness behavior in patients with severe mental illness and chronic fatigue. Our findings suggest that gut dysbiosis may underlie symptoms of sickness behavior across traditional diagnostic boundaries. Future investigations should validate these findings comparing the performances of the trans-diagnostic vs. categorical approach. This will facilitate treatment breakthrough in an area of unmet clinical need.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range

          Background In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. Methods In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.’s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. Results We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. Conclusions In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2288-14-135) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Research domain criteria (RDoC): toward a new classification framework for research on mental disorders.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems

              The gut-brain axis (GBA) consists of bidirectional communication between the central and the enteric nervous system, linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent advances in research have described the importance of gut microbiota in influencing these interactions. This interaction between microbiota and GBA appears to be bidirectional, namely through signaling from gut-microbiota to brain and from brain to gut-microbiota by means of neural, endocrine, immune, and humoral links. In this review we summarize the available evidence supporting the existence of these interactions, as well as the possible pathophysiological mechanisms involved. Most of the data have been acquired using technical strategies consisting in germ-free animal models, probiotics, antibiotics, and infection studies. In clinical practice, evidence of microbiota-GBA interactions comes from the association of dysbiosis with central nervous disorders (i.e. autism, anxiety-depressive behaviors) and functional gastrointestinal disorders. In particular, irritable bowel syndrome can be considered an example of the disruption of these complex relationships, and a better understanding of these alterations might provide new targeted therapies.
                Bookmark

                Author and article information

                Contributors
                amedeo.mininichino@psych.ox.ac.uk
                Journal
                Mol Psychiatry
                Mol Psychiatry
                Molecular Psychiatry
                Nature Publishing Group UK (London )
                1359-4184
                1476-5578
                8 February 2021
                8 February 2021
                2022
                : 27
                : 1
                : 141-153
                Affiliations
                [1 ]GRID grid.5386.8, ISNI 000000041936877X, Cornell University, ; Ithaca, NY USA
                [2 ]GRID grid.4991.5, ISNI 0000 0004 1936 8948, Department of Psychiatry, , University of Oxford, ; Oxford, UK
                Author information
                http://orcid.org/0000-0001-5563-4893
                http://orcid.org/0000-0002-6309-6324
                Article
                1032
                10.1038/s41380-021-01032-1
                8960409
                33558650
                7a5c6ab2-4b97-4aac-837a-b2de9a8978cf
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 October 2020
                : 18 December 2020
                : 13 January 2021
                Categories
                Review Article
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature Limited 2022

                Molecular medicine
                diagnostic markers,psychiatric disorders
                Molecular medicine
                diagnostic markers, psychiatric disorders

                Comments

                Comment on this article