47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Decoding in Rat Barrel Cortex: Optimizing the Linear Readout of Correlated Population Responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensory information is encoded in the response of neuronal populations. How might this information be decoded by downstream neurons? Here we analyzed the responses of simultaneously recorded barrel cortex neurons to sinusoidal vibrations of varying amplitudes preceded by three adapting stimuli of 0, 6 and 12 µm in amplitude. Using the framework of signal detection theory, we quantified the performance of a linear decoder which sums the responses of neurons after applying an optimum set of weights. Optimum weights were found by the analytical solution that maximized the average signal-to-noise ratio based on Fisher linear discriminant analysis. This provided a biologically plausible decoder that took into account the neuronal variability, covariability, and signal correlations. The optimal decoder achieved consistent improvement in discrimination performance over simple pooling. Decorrelating neuronal responses by trial shuffling revealed that, unlike pooling, the performance of the optimal decoder was minimally affected by noise correlation. In the non-adapted state, noise correlation enhanced the performance of the optimal decoder for some populations. Under adaptation, however, noise correlation always degraded the performance of the optimal decoder. Nonetheless, sensory adaptation improved the performance of the optimal decoder mainly by increasing signal correlation more than noise correlation. Adaptation induced little systematic change in the relative direction of signal and noise. Thus, a decoder which was optimized under the non-adapted state generalized well across states of adaptation.

          Author Summary

          In the natural environment, animals are constantly exposed to sensory stimulation. A key question in systems neuroscience is how attributes of a sensory stimulus can be “read out” from the activity of a population of brain cells. We chose to investigate this question in the whisker-mediated touch system of rats because of its well-established anatomy and exquisite functionality. The whisker system is one of the major channels through which rodents acquire sensory information about their surrounding environment. The response properties of brain cells dynamically adjust to the prevailing diet of sensory stimulation, a process termed sensory adaptation. Here, we applied a biologically plausible scheme whereby different brain cells contribute to sensory readout with different weights. We established the set of weights that provide the optimal readout under different states of adaptation. The results yield an upper bound for the efficiency of coding sensory information. We found that the ability to decode sensory information improves with adaptation. However, a readout mechanism that does not adjust to the state of adaptation can still perform remarkably well.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Spatio-temporal correlations and visual signalling in a complete neuronal population.

          Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus information conveyed and the means by which downstream neurons can extract it. Although a variety of measurements indicate the existence of such dependencies, their origin and importance for neural coding are poorly understood. Here we analyse the functional significance of correlated firing in a complete population of macaque parasol retinal ganglion cells using a model of multi-neuron spike responses. The model, with parameters fit directly to physiological data, simultaneously captures both the stimulus dependence and detailed spatio-temporal correlations in population responses, and provides two insights into the structure of the neural code. First, neural encoding at the population level is less noisy than one would expect from the variability of individual neurons: spike times are more precise, and can be predicted more accurately when the spiking of neighbouring neurons is taken into account. Second, correlations provide additional sensory information: optimal, model-based decoding that exploits the response correlation structure extracts 20% more information about the visual scene than decoding under the assumption of independence, and preserves 40% more visual information than optimal linear decoding. This model-based approach reveals the role of correlated activity in the retinal coding of visual stimuli, and provides a general framework for understanding the importance of correlated activity in populations of neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of correlated variability on the accuracy of a population code.

            We study the impact of correlated neuronal firing rate variability on the accuracy with which an encoded quantity can be extracted from a population of neurons. Contrary to widespread belief, correlations in the variabilities of neuronal firing rates do not, in general, limit the increase in coding accuracy provided by using large populations of encoding neurons. Furthermore, in some cases, but not all, correlations improve the accuracy of a population code.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4.

              Attention typically amplifies neuronal responses evoked by task-relevant stimuli while attenuating responses to task-irrelevant distracters. In this context, visual distracters constitute an external source of noise that is diminished to improve attended signal quality. Activity that is internal to the cortex itself, stimulus-independent ongoing correlated fluctuations in firing, might also act as task-irrelevant noise. To examine this, we recorded from area V4 of macaques performing an attention-demanding task. The firing of neurons to identically repeated stimuli was highly variable. Much of this variability originates from ongoing low-frequency (<5 Hz) fluctuations in rate correlated across the neuronal population. When attention is directed to a stimulus inside a neuron's receptive field, these correlated fluctuations in rate are reduced. This attention-dependent reduction of ongoing cortical activity improves the signal-to-noise ratio of pooled neural signals substantially more than attention-dependent increases in firing rate.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2014
                January 2014
                2 January 2014
                : 10
                : 1
                : e1003415
                Affiliations
                [1 ]School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
                [2 ]Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
                [3 ]School of Psychology & Australian Centre of Excellence in Vision Science, University of Sydney, Sydney, New South Wales, Australia
                Indiana University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MA EA. Performed the experiments: MA. Analyzed the data: MA JSM CWGC EA. Wrote the paper: MA JSM CWGC EA. Designed and implemented the software used in analysis: MA.

                Article
                PCOMPBIOL-D-13-01008
                10.1371/journal.pcbi.1003415
                3879135
                7a58fbf7-1c7f-4c14-997a-25edd35d3101
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 June 2013
                : 15 November 2013
                Page count
                Pages: 14
                Funding
                This work was supported by the Australian Research Council Discovery Project DP130101364 and the Australian National Health & Medical Research Council Project Grant1028670. EA and CC are supported by Future Fellowships from the Australian Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Neuroscience
                Computational Neuroscience
                Coding Mechanisms
                Sensory Systems
                Sensory Systems

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article