Sensory information is encoded in the response of neuronal populations. How might this information be decoded by downstream neurons? Here we analyzed the responses of simultaneously recorded barrel cortex neurons to sinusoidal vibrations of varying amplitudes preceded by three adapting stimuli of 0, 6 and 12 µm in amplitude. Using the framework of signal detection theory, we quantified the performance of a linear decoder which sums the responses of neurons after applying an optimum set of weights. Optimum weights were found by the analytical solution that maximized the average signal-to-noise ratio based on Fisher linear discriminant analysis. This provided a biologically plausible decoder that took into account the neuronal variability, covariability, and signal correlations. The optimal decoder achieved consistent improvement in discrimination performance over simple pooling. Decorrelating neuronal responses by trial shuffling revealed that, unlike pooling, the performance of the optimal decoder was minimally affected by noise correlation. In the non-adapted state, noise correlation enhanced the performance of the optimal decoder for some populations. Under adaptation, however, noise correlation always degraded the performance of the optimal decoder. Nonetheless, sensory adaptation improved the performance of the optimal decoder mainly by increasing signal correlation more than noise correlation. Adaptation induced little systematic change in the relative direction of signal and noise. Thus, a decoder which was optimized under the non-adapted state generalized well across states of adaptation.
In the natural environment, animals are constantly exposed to sensory stimulation. A key question in systems neuroscience is how attributes of a sensory stimulus can be “read out” from the activity of a population of brain cells. We chose to investigate this question in the whisker-mediated touch system of rats because of its well-established anatomy and exquisite functionality. The whisker system is one of the major channels through which rodents acquire sensory information about their surrounding environment. The response properties of brain cells dynamically adjust to the prevailing diet of sensory stimulation, a process termed sensory adaptation. Here, we applied a biologically plausible scheme whereby different brain cells contribute to sensory readout with different weights. We established the set of weights that provide the optimal readout under different states of adaptation. The results yield an upper bound for the efficiency of coding sensory information. We found that the ability to decode sensory information improves with adaptation. However, a readout mechanism that does not adjust to the state of adaptation can still perform remarkably well.