16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reproductive aspects of the poorly known and critically endangered freshwater snail Heleobia atacamensis (Gastropoda: Truncatelloidea)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowing the reproductive biology of threatened species is essential for conservation and to establish proper management plans. Heleobia atacamensis, a freshwater snail only known from two locations in the Atacama Saltpan, northern Chile, is currently classified as Data Deficient on the IUCN Red List and Critically Endangered by the Ministerio del Medio Ambiente of Chile. Based on size-frequency distribution, multivariate analysis of shell measurements, and microdissections, we studied the reproductive strategy, recruitment period, sex ratio and sexual dimorphism in this species. Heleobia atacamensis is an oviparous species, with direct development (non-planktotrophic). Females lay capsules of a single egg from which a juvenile resembling a miniature adult hatches after intracapsular metamorphosis is completed. The development type was confirmed by the observation of a paucispiral protoconch (= protoconch I) using scanning electron microscopy. Recruitment was observed across the four seasons of the year, with an increment at the end of austral summer. Results also showed that sex ratio was 1:1, whereas sexual dimorphism was not detected using univariate and multivariate analysis of the shell. The reproductive data provided in this study are a starting point for future management plans.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          Extraordinary Sex Ratios

          W Hamilton (1967)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines

            The strong focus on species extinctions, a critical aspect of the contemporary pulse of biological extinction, leads to a common misimpression that Earth’s biota is not immediately threatened, just slowly entering an episode of major biodiversity loss. This view overlooks the current trends of population declines and extinctions. Using a sample of 27,600 terrestrial vertebrate species, and a more detailed analysis of 177 mammal species, we show the extremely high degree of population decay in vertebrates, even in common “species of low concern.” Dwindling population sizes and range shrinkages amount to a massive anthropogenic erosion of biodiversity and of the ecosystem services essential to civilization. This “biological annihilation” underlines the seriousness for humanity of Earth’s ongoing sixth mass extinction event. The population extinction pulse we describe here shows, from a quantitative viewpoint, that Earth’s sixth mass extinction is more severe than perceived when looking exclusively at species extinctions. Therefore, humanity needs to address anthropogenic population extirpation and decimation immediately. That conclusion is based on analyses of the numbers and degrees of range contraction (indicative of population shrinkage and/or population extinctions according to the International Union for Conservation of Nature) using a sample of 27,600 vertebrate species, and on a more detailed analysis documenting the population extinctions between 1900 and 2015 in 177 mammal species. We find that the rate of population loss in terrestrial vertebrates is extremely high—even in “species of low concern.” In our sample, comprising nearly half of known vertebrate species, 32% (8,851/27,600) are decreasing; that is, they have decreased in population size and range. In the 177 mammals for which we have detailed data, all have lost 30% or more of their geographic ranges and more than 40% of the species have experienced severe population declines (>80% range shrinkage). Our data indicate that beyond global species extinctions Earth is experiencing a huge episode of population declines and extirpations, which will have negative cascading consequences on ecosystem functioning and services vital to sustaining civilization. We describe this as a “biological annihilation” to highlight the current magnitude of Earth’s ongoing sixth major extinction event.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parental investment, sexual selection and sex ratios.

              Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self-reinforcing process. The initial asymmetry in pre-mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post-mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871-1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre-mating and post-mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the 'Concorde Fallacy' as optimal decisions should depend on future pay-offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay-offs, it remains weak. The factors likely to change future pay-offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male-biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency-dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non-random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female-biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female-only care, male-biased OSR and female-biased ASR) to an avian type system (biparental care and a male-biased OSR and ASR).
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                17 August 2021
                2021
                : 9
                : e11550
                Affiliations
                [1 ]Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío , Chillán, Chile
                [2 ]Centro de Ecología Aplicada , Santiago, Chile
                Author information
                http://orcid.org/0000-0002-0294-174X
                Article
                11550
                10.7717/peerj.11550
                8378341
                34458016
                7a4c744a-7750-4e5a-b114-e5b7e1648fdf
                © 2021 Collado et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 29 January 2021
                : 11 May 2021
                Funding
                Funded by: Compañía Minera Albemarle Ltda
                Funded by: Centro de Ecología Aplicada Limitada, Chile
                This work was supported by the Compañía Minera Albemarle Ltda. and Centro de Ecología Aplicada Limitada, Chile. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Conservation Biology
                Ecology
                Zoology
                Freshwater Biology

                development type,protoconch,reproductive cycle,sex ratio,sexual dimorphism,shell shape variation

                Comments

                Comment on this article