17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both Parkinson’s disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.

          Few detailed clinico-pathological correlations of Parkinson's disease have been published. The pathological findings in 100 patients diagnosed prospectively by a group of consultant neurologists as having idiopathic Parkinson's disease are reported. Seventy six had nigral Lewy bodies, and in all of these Lewy bodies were also found in the cerebral cortex. In 24 cases without Lewy bodies, diagnoses included progressive supranuclear palsy, multiple system atrophy, Alzheimer's disease, Alzheimer-type pathology, and basal ganglia vascular disease. The retrospective application of recommended diagnostic criteria improved the diagnostic accuracy to 82%. These observations call into question current concepts of Parkinson's disease as a single distinct morbid entity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            alpha-Synuclein is phosphorylated in synucleinopathy lesions.

            The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.

              Two mutations in the gene encoding alpha-synuclein have been linked to early-onset Parkinson's disease (PD). alpha-Synuclein is a component of Lewy bodies, the fibrous cytoplasmic inclusions characteristic of nigral dopaminergic neurons in the PD brain. This connection between genetics and pathology suggests that the alpha-synuclein mutations may promote PD pathogenesis by accelerating Lewy body formation. To test this, we studied alpha-synuclein folding and aggregation in vitro, in the absence of other Lewy body-associated molecules. We demonstrate here that both mutant forms of alpha-synuclein (A53T and A30P) are, like wild-type alpha-synuclein (WT), disordered in dilute solution. However, at higher concentrations, Lewy body-like fibrils and discrete spherical assemblies are formed; most rapidly by A53T. Thus, mutation-induced acceleration of alpha-synuclein fibril formation may contribute to the early onset of familial PD.
                Bookmark

                Author and article information

                Journal
                J Cereb Blood Flow Metab
                J. Cereb. Blood Flow Metab
                JCB
                spjcb
                Journal of Cerebral Blood Flow & Metabolism
                SAGE Publications (Sage UK: London, England )
                0271-678X
                1559-7016
                1 January 2017
                June 2017
                : 37
                : 6
                : 1910-1926
                Affiliations
                [1 ]Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
                [2 ]Neuroscience Training Program, Madison, WI, USA
                [3 ]Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
                [4 ]William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
                Author notes
                [*]Raghu Vemuganti, Department of Neurological Surgery, University of Wisconsin, 600 Highland Ave, Madison, WI 53792, USA. Email: vemuganti@ 123456neurosurgery.wisc.edu
                Article
                10.1177_0271678X17694186
                10.1177/0271678X17694186
                5444552
                28273718
                7a4a224d-e399-4dcd-b8b4-e3196253782f
                © The Author(s) 2017

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 4 October 2016
                : 13 December 2016
                : 24 January 2017
                Categories
                Review Articles

                Neurosciences
                parkinson’s disease,cerebral ischemia,neurodegeneration,neuroprotection,α-synuclein

                Comments

                Comment on this article