26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lupeol, a Dietary Triterpene, Enhances Wound Healing in Streptozotocin-Induced Hyperglycemic Rats with Modulatory Effects on Inflammation, Oxidative Stress, and Angiogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Impaired wound healing is a debilitating complication of diabetes that leads to significant morbidity, particularly foot ulcers. Natural products have shown to be effective in treating skin wounds. Lupeol is known to stimulate angiogenesis, fibroblast proliferation, and expressions of cytokines and growth factors involved in wound healing. The study is performed to evaluate the wound healing activity of lupeol in streptozotocin-induced hyperglycemic rats by macroscopical, histological, immunohistochemical, immunoenzymatic, and molecular methods. Percentage of wound closure and contraction was increased in the lupeol-treated group when compared to the Lanette group. Histopathological observation revealed decreased inflammatory cell infiltration and increased proliferation of fibroblasts, vascularization, and deposition of collagen fibers after lupeol treatment. Immunohistochemical analyses showed decreased intensity of NF- κB and increased intensity of FGF-2, TGF- β1, and collagen III. ELISA results revealed downregulated IL-6 levels and upregulated IL-10 levels in response to lupeol. The mRNA expression levels of Hif-1α, Sod-2, and Ho-1 were significantly increased in response to lupeol as compared to Lanette whereas Nf-κb and Vegf-A levels were decreased in relation to insulin and lupeol treatment. These findings indicate that lupeol possesses wound healing potential in hyperglycemic conditions and may be useful as a treatment for chronic wounds in diabetic patients.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells.

          Diminished production of vascular endothelial growth factor (VEGF) and decreased angiogenesis are thought to contribute to impaired tissue repair in diabetic patients. We examined whether recombinant human VEGF(165) protein would reverse the impaired wound healing phenotype in genetically diabetic mice. Paired full-thickness skin wounds on the dorsum of db/db mice received 20 microg of VEGF every other day for five doses to one wound and vehicle (phosphate-buffered saline) to the other. We demonstrate significantly accelerated repair in VEGF-treated wounds with an average time to resurfacing of 12 days versus 25 days in untreated mice. VEGF-treated wounds were characterized by an early leaky, malformed vasculature followed by abundant granulation tissue deposition. The VEGF-treated wounds demonstrated increased epithelialization, increased matrix deposition, and enhanced cellular proliferation, as assessed by uptake of 5-bromodeoxyuridine. Analysis of gene expression by real-time reverse transcriptase-polymerase chain reaction demonstrates a significant up-regulation of platelet-derived growth factor-B and fibroblast growth factor-2 in VEGF-treated wounds, which corresponds with the increased granulation tissue in these wounds. These experiments also demonstrated an increase in the rate of repair of the contralateral phosphate-buffered saline-treated wound when compared to wounds in diabetic mice never exposed to VEGF (18 days versus 25 days), suggesting that topical VEGF had a systemic effect. We observed increased numbers of circulating VEGFR2(+)/CD11b(-) cells in the VEGF-treated mice by fluorescence-activated cell sorting analysis, which likely represent an endothelial precursor population. In diabetic mice with bone marrow replaced by that of tie2/lacZ mice we demonstrate that the local recruitment of bone marrow-derived endothelial lineage lacZ+ cells was augmented by topical VEGF. We conclude that topical VEGF is able to improve wound healing by locally up-regulating growth factors important for tissue repair and by systemically mobilizing bone marrow-derived cells, including a population that contributes to blood vessel formation, and recruiting these cells to the local wound environment where they are able to accelerate repair. Thus, VEGF therapy may be useful in the treatment of diabetic complications characterized by impaired neovascularization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular biology of chronic wounds and delayed healing in diabetes.

            Wound healing is a complicated and integrated process. Although there is some tolerance in terms of redundancy and interrelated control mechanisms, pushing beyond such limits may contribute to delayed wound healing, and in extreme cases lead to chronic wounds/ulcers and thus potentially to lower extremity amputation. Diabetes is associated with such disruption in wound healing. Research in humans and in animal models has identified a large number of changes associated with diabetes at the molecular level in delayed wound healing and to a lesser extent in chronic diabetic ulcers. Better overall understanding of these changes and how they are interrelated would allow for specifically targeted treatment, thus ensuring improved quality of life for patients and providing savings to the high costs that are associated with all aspects of chronic diabetic ulcers. This review examines the work done at the molecular level on chronic diabetic ulcers, as well as considering changes seen in diabetes in general, both in humans and animal models, that may in turn contribute to ulcer formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair.

              Chemokines are seen as the stimuli that largely control leukocyte migration. To assess whether the severely impaired process of cutaneous repair observed in genetically diabetic db/db mice is associated with a dysregulated infiltration of immune cells, we determined the expressional kinetics for the murine growth-regulated oncogene/melanoma growth stimulatory activity homolog macrophage inflammatory protein-2, and the macrophage chemoattractant protein-1, respectively. Wound repair in db/db mice was characterized by a sustained inflammatory response and a prolonged expression of macrophage inflammatory protein-2 and macrophage chemoattractant protein-1. Immuno-histochemistry revealed that keratinocytes at the wound margins expressed macrophage chemoattractant protein-1, whereas macrophage inflammatory protein-2 immunopositive signals were observed only in keratinocytes of hair follicles located adjacent to the wound site. Inactivation studies using neutralizing antibodies against macrophage chemoattractant protein-1 or macrophage inflammatory protein-2 indicated that sustained expression of these chemokines participated in a prolonged presence of neutrophils and macrophages at the wound site during diabetic repair. Furthermore, our data provide evidence that late infiltration (day 13 after injury) of neutrophils and macrophages into wounds in db/db mice was associated with a simultaneous downregulation of mRNA for receptors specific for macrophage inflammatory protein-2 and macrophage chemoattractant protein-1 in these animals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                9 May 2019
                : 2019
                : 3182627
                Affiliations
                1Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
                2Department of Surgery and Veterinary Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
                3Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, Sydney, Australia
                4Department of Pharmacy, Federal University of São Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
                Author notes

                Guest Editor: Débora V. Valencia

                Author information
                http://orcid.org/0000-0002-0498-4444
                http://orcid.org/0000-0001-5421-2904
                http://orcid.org/0000-0002-9234-9116
                http://orcid.org/0000-0002-4494-4180
                Article
                10.1155/2019/3182627
                6532325
                31210838
                7a1094bb-8a19-4ac7-9cc2-310f07d4019d
                Copyright © 2019 Fernando Pereira Beserra et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2019
                : 29 March 2019
                : 8 April 2019
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo
                Award ID: 2017/17600-1
                Award ID: 2014/23247-4
                Award ID: 2013/23340-1
                Funded by: São Paulo State University
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                scite_

                Similar content162

                Cited by34

                Most referenced authors694