0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Weighted gene co-expression network analysis reveals key stromal prognostic markers in pancreatic cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, it has been shown that stroma compartment can favor tumor proliferation and aggressiveness. Although extensive research with network analyses such as Weighted Gene Co-expression Network Analysis (WGCNA) has been conducted on pancreatic cancer and its stromal components, WGCNA has not previously been applied to isolate and identify genes associated with the abundance of stroma and survival outcome from bulk RNA data. We investigated the gene expression profile and clinical information of 140 pancreatic ductal adenocarcinoma patients from TCGA. Network analysis was performed using WGCNA and four modules were found to be associated to patients’ clinical traits. Specifically, one module of 2459 genes, was associated to stromal sample content. Subsequently, those genes were further analyzed for survival association through log-rank test and Cox regression. HPGDS and ITGA9-AS1 emerged as significant indicators of favorable prognosis while KCMF1 and YARS1 were implicated in poorer prognostic outcomes. Importantly, HPGDS was found to be stromal-specific in the TMA cohort of Human Protein Atlas. Single sample GSEA showed that the stromal module is enriched for stromal signature of Moffitt and Puleo. These findings suggest that we uncovered a stromal specific signature through WGCNA and found putative prognostic markers.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          KEGG: kyoto encyclopedia of genes and genomes.

          M Kanehisa (2000)
          KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            WGCNA: an R package for weighted correlation network analysis

            Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.

              The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 AACR.
                Bookmark

                Author and article information

                Contributors
                giulia.mantini@policlinicogemelli.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 December 2024
                30 December 2024
                2024
                : 14
                : 31749
                Affiliations
                [1 ]Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, ( https://ror.org/00rg70c39) Rome, Italy
                [2 ]Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, ( https://ror.org/00rg70c39) Rome, Italy
                [3 ]Medical Oncology, Catholic University of the Sacred Heart, ( https://ror.org/03h7r5v07) Rome, Italy
                [4 ]Department of Woman, Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, ( https://ror.org/00rg70c39) Rome, Italy
                [5 ]Institute of Obstetrics and Gynecology, Catholic University of the Sacred Heart, ( https://ror.org/03h7r5v07) Rome, Italy
                Article
                82563
                10.1038/s41598-024-82563-9
                11685961
                39738404
                79c51c5e-ce3d-4914-ab7f-5843d7e3ccc9
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 30 August 2024
                : 6 December 2024
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                wgcna,pdac,stroma,biomarkers,survival,pancreatic cancer,cancer microenvironment,gene ontology,gene regulatory networks,network topology,oncology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content265

                Most referenced authors1,578