17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      R848 Is Involved in the Antibacterial Immune Response of Golden Pompano ( Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          R848 is an imidazoquinoline compound that is a specific activator of toll-like receptor (TLR) 7/8 and is often used in immunological research in mammals and teleosts. However, the immune responses initiated by R848 through the TLR7/8 pathway in response to bacterial infection remain largely unexplored in teleosts. In the current study, we investigated the antibacterial response and the participating signaling pathway initiated by R848 in golden pompano ( Trachinotus ovatus). We found that R848 could stimulate the proliferation of head kidney lymphocytes (HKLs) in a dose-dependent manner, enhance the survival rate of HKLs, and inhibit the replication of bacteria in vivo. However, these effects induced by R848 were significantly reduced when chloroquine (CQ) was used to blocked endosomal acidification. Additionally, an in vivo study showed that R848 strengthened the antibacterial immunity of fish through a TLR7/8 and Myd88-dependent signaling pathway. A cellular experiment showed that Pepinh-MYD (a Myd88 inhibitor) significantly reduced the R848 -mediated proliferation and survival of HKLs. Luciferase activity analysis showed that R848 enhanced the nuclear factor kappa B (NF-κB) activity, whereas this activity was reduced when CQ and Pepinh-MYD were present. Additionally, when an NF-κB inhibitor was present, the R848-mediated pro-proliferative and pro-survival effects on HKLs were significantly diminished. An in vivo study showed that knockdown of TLR7, TLR8, and Myd88 expression in golden pompano via siRNA following injection of R848 resulted in increased bacterial dissemination and colonization in fish tissues compared to that of fish injection of R848 alone, suggesting that R848-induced antibacterial immunity was significantly reduced. In conclusion, these results indicate that R848 plays an essential role in the antibacterial immunity of golden pompano via the TLR7/8-Myd88-NF-κB- signaling pathway.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogen recognition and innate immunity.

          Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8.

            F Heil (2004)
            Double-stranded ribonucleic acid (dsRNA) serves as a danger signal associated with viral infection and leads to stimulation of innate immune cells. In contrast, the immunostimulatory potential of single-stranded RNA (ssRNA) is poorly understood and innate immune receptors for ssRNA are unknown. We report that guanosine (G)- and uridine (U)-rich ssRNA oligonucleotides derived from human immunodeficiency virus-1 (HIV-1) stimulate dendritic cells (DC) and macrophages to secrete interferon-alpha and proinflammatory, as well as regulatory, cytokines. By using Toll-like receptor (TLR)-deficient mice and genetic complementation, we show that murine TLR7 and human TLR8 mediate species-specific recognition of GU-rich ssRNA. These data suggest that ssRNA represents a physiological ligand for TLR7 and TLR8.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.

              M Yamamoto (2003)
              Stimulation of Toll-like receptors (TLRs) triggers activation of a common MyD88-dependent signaling pathway as well as a MyD88-independent pathway that is unique to TLR3 and TLR4 signaling pathways leading to interferon (IFN)-beta production. Here we disrupted the gene encoding a Toll/IL-1 receptor (TIR) domain-containing adaptor, TRIF. TRIF-deficient mice were defective in both TLR3- and TLR4-mediated expression of IFN-beta and activation of IRF-3. Furthermore, inflammatory cytokine production in response to the TLR4 ligand, but not to other TLR ligands, was severely impaired in TRIF-deficient macrophages. Mice deficient in both MyD88 and TRIF showed complete loss of nuclear factor kappa B activation in response to TLR4 stimulation. These findings demonstrate that TRIF is essential for TLR3- and TLR4-mediated signaling pathways facilitating mammalian antiviral host defense.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 January 2021
                2020
                : 11
                : 617522
                Affiliations
                [1] 1State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou, China
                [2] 2Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University , Haikou, China
                Author notes

                Edited by: Jun Li, Lake Superior State University, United States

                Reviewed by: Min Zhang, Qingdao Agricultural University, China; Jingguang Wei, South China Agricultural University, China

                *Correspondence: Yun Sun, syshui207@ 123456126.com

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2020.617522
                7848160
                33537035
                79be094c-941e-4bfd-b615-073ed3470389
                Copyright © 2021 Zhou, Chen, Cao, Li, Long, Wu, Zhang and Sun

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 October 2020
                : 01 December 2020
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 77, Pages: 13, Words: 5771
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 41666006, 42066007
                Categories
                Immunology
                Original Research

                Immunology
                r848,tlr7/8,antibacterial immune response,myd88,nf-κb
                Immunology
                r848, tlr7/8, antibacterial immune response, myd88, nf-κb

                Comments

                Comment on this article