30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      microRNA alterations in ALDH positive mammary epithelial cells: a crucial contributing factor towards breast cancer risk reduction in case of early pregnancy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          microRNAs have recently succeeded in grabbing the center stage in cancer research for their potential to regulate vital cellular process like cell cycle, stem cell renewal and epithelial mesenchymal transition. Breast cancer is the second most leading cause of cancer related mortality in women. The main reason for mortality is chemoresistance and metastasis for which remnant stem cells are believed to be the cause. One of the natural ways to reduce the risk of breast cancer in women is early pregnancy. Unraveling the mechanism behind it would add to our knowledge and help in evolving newer paradigms for breast cancer prevention.

          The current study deals with investigating transcriptomic differences in putative stem cells in mammary epithelial cell population (MECs) in terms of genes and microRNAs. In silico tools were used to identify potential mechanisms. ALDH positive MECs represent a putative stem cell population in the mammary gland.

          Methods

          MECs were extracted from the mammary gland of virgin and parous (one time pregnant) rats. ALDH positive MECs were sorted and used for transcriptional and translational analysis for genes and microRNAs. In silico analysis for target prediction and networking was performed through online portals of Target Scan and Metacore.

          Results

          A total of 35 and 49 genes and microRNAs respectively were found to be differentially expressed within the two groups. Among the important genes were Lifr, Acvr1c, and Pparγ which were found to be targeted by microRNAs in our dataset like miR-143, miR-30, miR-140, miR-27b, miR-125a, miR-128ab, miR-342, miR-26ab, miR-181, miR-150, miR-23ab and miR-425. In silico data mining and networking also demonstrates that genes and microRNA interaction can have profound effects on stem cell renewal, cell cycle dynamics and EMT processes of the MEC population.

          Conclusions

          Our data clearly shows that certain microRNAs play crucial role in the regulation of ALDH positive MECs and favor an anti-carcinogenic environment in the post-partum gland. Some of the potential interplaying mechanisms in the ALDH positive MEC population identified through this study are p21, Lifr and Pparγ mediated cell cycle regulation, regulation of metastasis and expansion of stem cell pool respectively.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2407-14-644) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A detailed mammosphere assay protocol for the quantification of breast stem cell activity.

          Since the discovery that neural tissue contains a population of stem cells that form neurospheres in vitro, sphere-forming assays have been adapted for use with a number of different tissue types for the quantification of stem cell activity and self-renewal. One tissue type widely used for stem cell investigations is mammary tissue, and the mammosphere assay has been used in both normal tissue and cancer. Although it is a relatively simple assay to learn, it can be difficult to master. There are methodological and analytical aspects to the assay which require careful consideration when interpreting the results. We describe here a detailed mammosphere assay protocol for the assessment of stem cell activity and self-renewal, and discuss how data generated by the assay can be analysed and interpreted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global breast cancer burden: variations in epidemiology and survival.

            Breast cancer is the most common type of cancer and the most common cause of cancer-related mortality among women worldwide. However, the burden is not evenly distributed, and, according to the best available data, there are large variations in the incidence, mortality, and survival between different countries and regions and within specific regions. Many complex factors underlie these variations, including population structure (eg, age, race, and ethnicity), lifestyle, environment, socioeconomic status, risk factor prevalence, mammography use, disease stage at diagnosis, and access to high-quality care. We review recent breast cancer incidence and mortality statistics and explore why these vary so greatly across the world. Further research is needed to fully understand the reasons for variations in breast cancer outcomes. This will aid the development of tailored strategies to improve outcomes in general as well as the standard of care for underserved populations and reduce the burden of breast cancer worldwide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA sequence and expression analysis in breast tumors by deep sequencing.

              MicroRNAs (miRNA) regulate many genes critical for tumorigenesis. We profiled miRNAs from 11 normal breast tissues, 17 noninvasive, 151 invasive breast carcinomas, and 6 cell lines by in-house-developed barcoded Solexa sequencing. miRNAs were organized in genomic clusters representing promoter-controlled miRNA expression and sequence families representing seed sequence-dependent miRNA target regulation. Unsupervised clustering of samples by miRNA sequence families best reflected the clustering based on mRNA expression available for this sample set. Clustering and comparative analysis of miRNA read frequencies showed that normal breast samples were separated from most noninvasive ductal carcinoma in situ and invasive carcinomas by increased miR-21 (the most abundant miRNA in carcinomas) and multiple decreased miRNA families (including miR-98/let-7), with most miRNA changes apparent already in the noninvasive carcinomas. In addition, patients that went on to develop metastasis showed increased expression of mir-423, and triple-negative breast carcinomas were most distinct from other tumor subtypes due to upregulation of the mir~17-92 cluster. However, absolute miRNA levels between normal breast and carcinomas did not reveal any significant differences. We also discovered two polymorphic nucleotide variations among the more abundant miRNAs miR-181a (T19G) and miR-185 (T16G), but we did not identify nucleotide variations expected for classical tumor suppressor function associated with miRNAs. The differentiation of tumor subtypes and prediction of metastasis based on miRNA levels is statistically possible but is not driven by deregulation of abundant miRNAs, implicating far fewer miRNAs in tumorigenic processes than previously suggested. ©2011 AACR.
                Bookmark

                Author and article information

                Contributors
                sushmita.nandy@ttuhsc.edu
                ramadevi.subramani@ttuhsc.edu
                venkateshr89@gmail.com
                rebecca.lopez@ttuhsc.edu
                arunkumar.arumugam@ttuhsc.edu
                thiyagarajan.boopalan@ttuhsc.edu
                rajkumar.lakshmanaswamy@ttuhsc.edu
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                31 August 2014
                31 August 2014
                2014
                : 14
                : 1
                : 644
                Affiliations
                Department of Biomedical Sciences MSB1, Center of Excellence in Cancer Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA
                Article
                4842
                10.1186/1471-2407-14-644
                4167510
                25176219
                79b67c7c-c706-4bbc-ba20-60474a2c9693
                © Nandy et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 November 2013
                : 20 August 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Oncology & Radiotherapy
                pregnancy,aldh positive mecs,breast cancer,micrornas
                Oncology & Radiotherapy
                pregnancy, aldh positive mecs, breast cancer, micrornas

                Comments

                Comment on this article