98
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The biodiversity hypothesis and allergic disease: world allergy organization position statement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biodiversity loss and climate change secondary to human activities are now being associated with various adverse health effects. However, less attention is being paid to the effects of biodiversity loss on environmental and commensal (indigenous) microbiotas. Metagenomic and other studies of healthy and diseased individuals reveal that reduced biodiversity and alterations in the composition of the gut and skin microbiota are associated with various inflammatory conditions, including asthma, allergic and inflammatory bowel diseases (IBD), type1 diabetes, and obesity. Altered indigenous microbiota and the general microbial deprivation characterizing the lifestyle of urban people in affluent countries appear to be risk factors for immune dysregulation and impaired tolerance. The risk is further enhanced by physical inactivity and a western diet poor in fresh fruit and vegetables, which may act in synergy with dysbiosis of the gut flora. Studies of immigrants moving from non-affluent to affluent regions indicate that tolerance mechanisms can rapidly become impaired in microbe-poor environments. The data on microbial deprivation and immune dysfunction as they relate to biodiversity loss are evaluated in this Statement of World Allergy Organization (WAO). We propose that biodiversity, the variability among living organisms from all sources are closely related, at both the macro- and micro-levels. Loss of the macrodiversity is associated with shrinking of the microdiversity, which is associated with alterations of the indigenous microbiota. Data on behavioural means to induce tolerance are outlined and a proposal made for a Global Allergy Plan to prevent and reduce the global allergy burden for affected individuals and the societies in which they live.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

          Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exposure to environmental microorganisms and childhood asthma.

            Children who grow up in environments that afford them a wide range of microbial exposures, such as traditional farms, are protected from childhood asthma and atopy. In previous studies, markers of microbial exposure have been inversely related to these conditions. In two cross-sectional studies, we compared children living on farms with those in a reference group with respect to the prevalence of asthma and atopy and to the diversity of microbial exposure. In one study--PARSIFAL (Prevention of Allergy-Risk Factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle)--samples of mattress dust were screened for bacterial DNA with the use of single-strand conformation polymorphism (SSCP) analyses to detect environmental bacteria that cannot be measured by means of culture techniques. In the other study--GABRIELA (Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community [GABRIEL] Advanced Study)--samples of settled dust from children's rooms were evaluated for bacterial and fungal taxa with the use of culture techniques. In both studies, children who lived on farms had lower prevalences of asthma and atopy and were exposed to a greater variety of environmental microorganisms than the children in the reference group. In turn, diversity of microbial exposure was inversely related to the risk of asthma (odds ratio for PARSIFAL, 0.62; 95% confidence interval [CI], 0.44 to 0.89; odds ratio for GABRIELA, 0.86; 95% CI, 0.75 to 0.99). In addition, the presence of certain more circumscribed exposures was also inversely related to the risk of asthma; this included exposure to species in the fungal taxon eurotium (adjusted odds ratio, 0.37; 95% CI, 0.18 to 0.76) and to a variety of bacterial species, including Listeria monocytogenes, bacillus species, corynebacterium species, and others (adjusted odds ratio, 0.57; 95% CI, 0.38 to 0.86). Children living on farms were exposed to a wider range of microbes than were children in the reference group, and this exposure explains a substantial fraction of the inverse relation between asthma and growing up on a farm. (Funded by the Deutsche Forschungsgemeinschaft and the European Commission.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Has the microbiota played a critical role in the evolution of the adaptive immune system?

              Although microbes have been classically viewed as pathogens, it is now well established that the majority of host-bacterial interactions are symbiotic. During development and into adulthood, gut bacteria shape the tissues, cells, and molecular profile of our gastrointestinal immune system. This partnership, forged over many millennia of coevolution, is based on a molecular exchange involving bacterial signals that are recognized by host receptors to mediate beneficial outcomes for both microbes and humans. We explore how specific aspects of the adaptive immune system are influenced by intestinal commensal bacteria. Understanding the molecular mechanisms that mediate symbiosis between commensal bacteria and humans may redefine how we view the evolution of adaptive immunity and consequently how we approach the treatment of numerous immunologic disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                World Allergy Organ J
                World Allergy Organ J
                The World Allergy Organization Journal
                World Allergy Organization
                1939-4551
                2013
                31 January 2013
                : 6
                : 1
                : 3
                Affiliations
                [1 ]Skin and Allergy Hospital, Helsinki University Hospital, PO Box 160, 00029, Helsinki, HUCH, Finland
                [2 ]School of Medicine, University of Southampton, Southampton, UK
                [3 ]Nippon Medical School, Tokyo, Japan
                [4 ]Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
                [5 ]Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
                [6 ]Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
                [7 ]Allergy, Asthma & Immunology Center of Alaska, Dept of Pediatrics, University of Washington, Washington, USA
                [8 ]University of Missouri-Kansas City School of Medicine, Missouri, USA
                Author notes
                WAO Special Committee on Climate Change and Biodiversity
                Article
                1939-4551-6-3
                10.1186/1939-4551-6-3
                3646540
                23663440
                79ab5f28-db71-454c-a816-13444fa519aa
                Copyright ©2013 Haahtela et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2013
                : 17 January 2013
                Categories
                Position Article and Guidelines

                Immunology
                allergy plan,biodiversity,civilization disease,epigenetics,immune dysfunction,microbiota,microbiome,urbanization

                Comments

                Comment on this article