1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knowledge, awareness and practices of healthcare workers regarding antimicrobial use, resistance and stewardship in Zambia: a multi-facility cross-sectional study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Antimicrobial resistance (AMR) poses a threat to public health globally. Despite its consequences, there is little information about the knowledge, awareness, and practices towards AMR among healthcare workers (HCWs). Therefore, this study assessed the knowledge, awareness and practices regarding antimicrobial use (AMU), AMR and antimicrobial stewardship (AMS) among HCWs who are involved in the implementation of AMS activities across eight hospitals in Zambia.

          Methods

          A cross-sectional study was conducted among 64 HCWs from October to December 2023 using a semi-structured questionnaire. Data were analysed using IBM SPSS version 25.0.

          Results

          Of the 64 HCWs, 59.4% were females, 60.9% were aged between 25 and 34 years, 37.5% were nurses, 18.7% were pharmacists, 17.2% were medical doctors and only one was a microbiologist. Overall, 75% of the HCWs had good knowledge, 84% were highly aware and 84% had good practices regarding AMU, AMR and AMS. Most of the HCWs (90.6%) responded that they had a multidisciplinary AMS team at their hospitals and were implementing the use of the WHO AWaRe classification of antibiotics.

          Conclusion

          This study found good knowledge levels, high awareness and good practices regarding AMU, AMR and AMS among HCWs who were involved in the implementation of AMS activities in hospitals in Zambia. Additionally, most hospitals have been conducting AMS training and implementing the use of the WHO AWaRe classification of antibiotics. However, there is still a need to address some identified gaps in AMU and AMR through the strengthening of AMS activities in hospitals.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The antibiotic resistance crisis: part 1: causes and threats.

            Decades after the first patients were treated with antibiotics, bacterial infections have again become a threat because of the rapid emergence of resistant bacteria-a crisis attributed to abuse of these medications and a lack of new drug development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial resistance: a global multifaceted phenomenon.

              Antimicrobial resistance (AMR) is one of the most serious global public health threats in this century. The first World Health Organization (WHO) Global report on surveillance of AMR, published in April 2014, collected for the first time data from national and international surveillance networks, showing the extent of this phenomenon in many parts of the world and also the presence of large gaps in the existing surveillance. In this review, we focus on antibacterial resistance (ABR), which represents at the moment the major problem, both for the high rates of resistance observed in bacteria that cause common infections and for the complexity of the consequences of ABR. We describe the health and economic impact of ABR, the principal risk factors for its emergence and, in particular, we illustrate the highlights of four antibiotic-resistant pathogens of global concern - Staphylococcus aureus, Klebsiella pneumoniae, non-typhoidal Salmonella and Mycobacterium tuberculosis - for whom we report resistance data worldwide. Measures to control the emergence and the spread of ABR are presented.
                Bookmark

                Author and article information

                Contributors
                Journal
                JAC Antimicrob Resist
                JAC Antimicrob Resist
                jacamr
                JAC-Antimicrobial Resistance
                Oxford University Press (UK )
                2632-1823
                June 2024
                17 May 2024
                17 May 2024
                : 6
                : 3
                : dlae076
                Affiliations
                Department of Pharmacy, School of Health Sciences, University of Zambia , Lusaka, Zambia
                Department of Medicines Control, Zambia Medicines Regulatory Authority , Lusaka, Zambia
                Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University , Ndola, Zambia
                Department of Medicines Control, Zambia Medicines Regulatory Authority , Lusaka, Zambia
                Pharmacy Practice Department, School of Pharmacy, University of Health and Allied Sciences , Volta Region, PMB 31, Ho, Ghana
                Strengthening Pandemic Preparedness, Eastern, Central, and Southern Africa Health Community , Arusha, Tanzania
                Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute , Lusaka, Zambia
                Action on Antibiotic Resistance (ReAct) Africa, Lusaka, Zambia
                Faculty of Medicine, Mbarara University of Science and Technology , Mbarara, Uganda
                Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia , Gelugor, Penang, 11800, Malaysia
                Department of Pharmacy Services, District Headquarter (DHQ) Hospital , Pakpattan, 57400, Pakistan
                Action on Antibiotic Resistance (ReAct) Africa, Lusaka, Zambia
                Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute , Lusaka, Zambia
                Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute , Lusaka, Zambia
                Author notes
                Corresponding author. E-mail: steward.mudenda@ 123456unza.zm
                Author information
                https://orcid.org/0000-0003-1692-8981
                https://orcid.org/0000-0001-9490-5609
                https://orcid.org/0000-0002-6695-5139
                https://orcid.org/0000-0002-8109-4859
                Article
                dlae076
                10.1093/jacamr/dlae076
                11100357
                38764535
                7988630d-fe2e-438c-9f0f-f4a0d836d1b0
                © The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 March 2024
                : 29 April 2024
                Page count
                Pages: 11
                Categories
                Original Article
                AcademicSubjects/MED00740
                AcademicSubjects/SCI01150

                Comments

                Comment on this article