38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sugar transporters for intercellular exchange and nutrition of pathogens.

            Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis.

              SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a master transcriptional switch activating the developmental program of secondary wall biosynthesis. Here, we demonstrate that a battery of SND1-regulated transcription factors is required for normal secondary wall biosynthesis in Arabidopsis thaliana. The expression of 11 SND1-regulated transcription factors, namely, SND2, SND3, MYB103, MYB85, MYB52, MYB54, MYB69, MYB42, MYB43, MYB20, and KNAT7 (a Knotted1-like homeodomain protein), was developmentally associated with cells undergoing secondary wall thickening. Of these, dominant repression of SND2, SND3, MYB103, MYB85, MYB52, MYB54, and KNAT7 significantly reduced secondary wall thickening in fiber cells. Overexpression of SND2, SND3, and MYB103 increased secondary wall thickening in fibers, and overexpression of MYB85 led to ectopic deposition of lignin in epidermal and cortical cells in stems. Furthermore, SND2, SND3, MYB103, MYB85, MYB52, and MYB54 were able to induce secondary wall biosynthetic genes. Direct target analysis using the estrogen-inducible system revealed that MYB46, SND3, MYB103, and KNAT7 were direct targets of SND1 and also of its close homologs, NST1, NST2, and vessel-specific VND6 and VND7. Together, these results demonstrate that a transcriptional network consisting of SND1 and its downstream targets is involved in regulating secondary wall biosynthesis in fibers and that NST1, NST2, VND6, and VND7 are functional homologs of SND1 that regulate the same downstream targets in different cell types.
                Bookmark

                Author and article information

                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                23 April 2020
                April 2020
                : 9
                : 4
                : 312
                Affiliations
                [1 ]State Key Laboratory of Crop Stress Biology in Arid Areas, College of horticulture, Northwest A&F University, Xianyang 712100, China; vivekyadav@ 123456nwafu.edu.cn (V.Y.); zydx@ 123456nwafu.edu.cn (Z.W.); xjwend020405@ 123456nwafu.edu.cn (C.W.); bajwa1999@ 123456nwafu.edu.cn (B.A.); yxzh5186@ 123456126.com (X.Y.)
                [2 ]College of Agronomy, Northwest A&F University, Xianyang 712100, China; amoaristotle@ 123456nwafu.edu.cn
                Author notes
                [* ]Correspondence: zhangxian@ 123456nwafu.edu.cn ; Tel.: +86-029-8708-2613
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-8259-6706
                https://orcid.org/0000-0001-9902-9994
                Article
                pathogens-09-00312
                10.3390/pathogens9040312
                7238016
                32340374
                796fef97-1371-47c9-b31b-447bbf07da5f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 March 2020
                : 17 April 2020
                Categories
                Review

                phenylpropanoid pathway,plant defense,lignin,monolignol pathway,broad spectrum resistance

                Comments

                Comment on this article